1. Prove the following claim about any two sets A and B: $A \subseteq B$ iff $A \cap B = A$.

2. Let $f : A \to B$ be a function between two sets, and let $A_0 \subseteq A$ and $B_0 \subseteq B$. Decide whether each of the following four claims is true or false. If true, provide a proof. If false, provide an actual counterexample:

(a)
$$A_0 \subseteq f^{-1}(f(A_0))$$
:

(b)
$$A_0 \supseteq f^{-1}(f(A_0))$$
:

(c)
$$B_0 \subseteq f(f^{-1}(B_0))$$
:

(d) $B_0 \supseteq f(f^{-1}(B_0))$:

- 3. First, some definitions. A function f : A → B is called *injective* if f(a) = f(a') implies a = a' (that is, no two distinct elements of A get mapped to the same element of B). A function f : A → B is called *surjective* if f(A) = B (that is, every element of B is hit by at least one element of A). Finally, f is called *bijective* if it is both injective and surjective:
 - (a) Let $\mathbb{N} = \{1, 2, 3, ...\}$ denote the set of positive integers. Find a function $f : \mathbb{N} \to \mathbb{N}$ which is injective but not surjective:
 - (b) Construct a bijective function $g: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$:

(c) Suppose $f : A \to B$ is bijective. Show that there exists a function $g : B \to A$ such that $(g \circ f)(a) = a$ for every $a \in A$, and $(f \circ g)(b) = b$ for every $b \in B$: