- 1. Let X be a set and Y a subset of X. Let \mathcal{T} and \mathcal{T}' be two topologies on X, and let \mathcal{T}_Y and \mathcal{T}'_Y be the topologies they induce on Y. Suppose \mathcal{T}' is strictly finer than \mathcal{T} .
 - (a) Prove that \mathcal{T}'_Y is finer than \mathcal{T}_Y .

(b) Show by explicit counterexample that \mathcal{T}'_Y need not be *strictly* finer than \mathcal{T}_Y

2. Let X and Y be topological spaces, and give $X \times Y$ the product topology. Consider the projection function $\pi : X \times Y \to X$ given by the formula $\pi(x, y) = x$. Is this a continuous function? If yes, prove it. If not, find an explicit counterexample.

3. Show that every subspace Y of a Hausdorff space X is itself a Hausdorff space.