- 1. Let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be two continuous functions, where \mathbb{R} has the usual topology and X is an arbitrary topological space.
 - (a) Given $a \in \mathbb{R}$, the *level set* of f at a is defined to be $X_a = \{x \mid f(x) = a\}$. Prove that X_a is closed in X, for all $a \in \mathbb{R}$:

(b) Prove that the set $\{x \mid f(x) \ge g(x)\}$ is closed in X:

2. Let A, B, C, D be topological spaces, and suppose $f : A \to B$ and $g : C \to D$ are continuous functions. Define the function $f \times g : A \times C \to B \times D$ by the rule $(f \times g)((a, c)) = (f(a), g(c))$. Show that $f \times g$ is a continuous function.