- 1. Let I = [0, 1], and define $X = I \times I$ to be the unit square (with the subspace topology inherited from the Euclidean plane). Define an equivalence relation \sim on X by declaring $(x, y) \sim (s, t)$ if (x, y) = (s, t) or if x = s and $y, t \in \{0, 1\}$. Let $Y = X/\sim$ with the quotient topology.
 - (a) Using several copies of X as your drawing board, shade in all the possible typical open sets of Y:

(b) Prove that Y is homeomorphic to the cylinder $Z = S^1 \times I$ with the subspace topology inherited from Euclidean three-space:

2. Let X be a topological space and let A be a *set*, with $p : X \to A$ a surjective function. Show that the quotient topology induced by p is the finest topology on A relative to which p is continuous:

3. Let $Z = (\mathbb{R} \times \{0\}) \cup (\{0\} \times \mathbb{R})$, considered to be just a set for the moment. Define $g : \mathbb{R}^2 \to Z$, where \mathbb{R}^2 has the standard topology, by the rule g(x, y) = (x, 0) if $x \neq 0$, and g(x, y) = (0, y) if x = 0. Show that Z is not Hausdorff if given the quotient topology induced by g.