
Math 412: Topology with Applications

March 18, 2016

• Instructor: Paul Bendich

• Day/Time: T/Th: 8:30-9:45 AM

• Room: Gross Hall 318

• Office Hours:

– Mondays, 11-12, Math 210

– Fridays, 11:45-1, Gross Hall 327

1 Course Summary

Introduction to the subject of Topological Data Analysis (TDA). We will learn
some basic (and not-so-basic) topological, geometric, and algebraic tools, and
see how to apply them in a variety of interesting situations. The course will
begin by introducing a key TDA concept, the persistence diagram, and will
quickly move on to several applications that use these diagrams. After the
break, we will cover some more advanced topics from algebraic topology, and
also see how they can be applied.

This course is centered around applications, and so the syllabus is designed
to fit them in early and often. Along the way, you will also be exposed to
some analytical techniques from statistics and machine-learning. Nonetheless,
there will be quite a bit of traditional theorem-proof mathematics, both in the
construction of TDA theory and in the production of algorithms fast and robust
enough to meet the demands of actual data.

Each student will have the opportunity to participate in a course project,
involving the application of TDA (and other) techniques to a dataset of their
choosing.

2 Course Materials

We will use one textbook,

• Computational Topology: An Introduction, by Herbert Edelsbrunner and
John Harer, American Mathematical Society,

but we will not go through it in a particularly linear fashion. In the Lecture
Schedule below, all roman numerals refer to sections from this book. There
will also be quite a lot of material taken from published journal articles and
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conference proceedings; these are indicated by bracketed numbers in the lecture
schedule. Please do not feel obligated to read these extra papers in any detail,
but they may well be useful for extra reading after lecture. All of these are
publically available on the web.

3 Problem Sets

There will be homework problems, usually assigned after each lecture, and gen-
erally collected in bulk each Monday. Most of the exercises will be pencil-and-
paper, but some of them may also involve some very basic computation. It
is certainly permitted (and advisable!) to collaborate with others on these as-
signments. However, all work must be written up entirely on your own. Late
homework will not be accepted.

4 Projects

Instead of a final exam, you will do a project. The requirements for this are quite
open-ended: all that is needed is a real (or very compelling synthetic) dataset
that you actually enjoy, and a question that can potentially be answered at
least in part with TDA techniques. Please ensure that you have full and
legal access to the dataset, and that you have the right to perform
the analyses you will perform.

It is very likely that this will involve some form of coding, but all of the TDA
packages out there (there is a Duke-based one called TDATools and several other
freely available ones on the web) are very user-friendly, and I will be available
to help you each step of the way. Given the size of the class, it’ll be best if
people are able to form groups of two or three, based on common interest. I’ll
facilitate this early in the semester.

More details about the project are given at the end of this document.

5 Grading

Half of your grade will be based on the problem sets, and half will be based on
the project.
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6 Lecture Schedule

Date Material Chapters/Papers
1/14 Course Overview
1/19 Zero-dimensional Persistent Homology VII.1, I.1
1/21 Metrics and Stability VIII.2, VIII.4
1/26 Applications: Brain Arteries, Driver Behavior [4], [10]
1/28 Homology (informal), Simplicial Complexes
2/2 Simplicial Homology: Defintion, Examples III.1, IV.1
2/4 Simplicial Homology: More Examples, Algorithm IV.1, IV.2
2/9 Application: Neural Correlation in Clique Topology [9]
2/11 Persistent Homology: Defintion, Examples VII.1, VII.2
2/16 Persistent Homology: More Examples, Algorithm VII.1, VII.2
2/18 Height Functions and Distance Functions
2/23 Stability Theorems, Homology Inference [5], [6]
2/25 Point-Cloud Triangulations III.2, III.3
3/1 Data Expedition: Sliding-Windows and Weather Data
3/3 Machine-Learning and Statistics Boot Camp
3/8 blank
3/10 blank
3/22 Relative Homology IV.3
3/24 Application: sensor networks [8], [7]
3/29 Local Homology [3]
3/31 Application: Road Network Reconstruction [2]
4/5 Long Exact Sequence of the Pair IV.3
4/7 Snake Lemma IV.4
4/12 Mayer-Vietoris IV.4
4/14 Rips-Collapse Algorithm
4/19 Rips Complexes and Cover-Trees [11]
4/21 Extended Persistence VII.3
4/26 Application: Protein Docking IX.2, [1]
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7 Project Details

Here are the due dates associated to the project.

• By 3/21: project selection (subject to approval by me!)

• By 4/4: Annotated Bibliography, pdf to me by 5 pm.

• 4/25: Presentation, uploaded by 5 pm.

• 5/7: paper due, pdf to me by 10 pm.

I expect your project to produce two end-products: a presentation and a
paper.

Presentation The presentation should be about 20 minutes long, and do an
excellent job of summarizing your work at a high-level that is broadly under-
standable by all students in the class. Its main purpose will be to generate
feedback from the other students, and myself, which you can then incorporate
into your final paper. A secondary purpose might be to produce something that
you can use to show off your work in later contexts.

Given the large size of the class, we won’t use class time for presentations.
Instead, I will require everyone to record themselves giving the presentation
(having a slide show with your voice recorded is perfectly fine) and to upload
this recording to a website (to be arranged). I’ll then break the class into smaller
groups, ask everyone in a group to watch all the presentations in their group
and leave comments. Of course, I will watch all the presentations as well!

Paper The paper should be a maximum of six pages, including figures and
references, and must be written in LaTex (I will provide a template). References
should be in the form seen in this document.

Your paper should provide detailed and coherent answers to the following
questions:

• What is your dataset and why do people care about it?

• What type of insight do you hope to gain using TDA methods?

• What other methods have people used to gain similar insight on this type
of data?

• How did you actually use TDA methods on this data (give both conceptual
and implementation-oriented details)?

• What did you find?

• What else would you try, given more time?

In addition, I expect you to incorporate the feedback from your presentation
in a sensible way.
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