Homework I: Point-Set Topology and Surfaces

due 28 Oct, 2010

1 Some Point-Set Problems

- A We define the *half-infinite topology* on \mathbb{R} to be generated by the set of all intervals $[a, \infty)$, for all $a \in \mathbb{R}$, along with the empty set.
 - (a) Prove that this is a topology:

(b) Is \mathbb{R} with the half-infinite topology a Hausdorff space? (recall that a topological space $(\mathbb{X}, \mathcal{T})$ is Hausdorff if for each pair of distinct points $x, y \in \mathbb{X}$, there exists open sets $U, V \in \mathcal{T}$ such that $x \in U, y \in V$, and $U \cap V = \emptyset$):

(c) Is \mathbb{R} with the half-infinite topology a connected space?

- B Consider the unit-circle $S^1 = \{x = (x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 1\}$ as a subspace of \mathbb{R}^2 with the usual topology.
 - (a) Define $A = \{x \in S^1 \mid x_1 > 0\}$. Is A an open set in S^1 ? Is A a open set in \mathbb{R}^2 ?

(b) Define $B = \{x \in S^1 \mid x_1 \ge 0\}$. Is B a closed set in S^1 ? Is B a closed set in \mathbb{R}^2 ?

- C Let (X, T) be an arbitrary topological space and pick some set $A \subset X$. We define the *closure* of A to be the smallest closed set which contains A. We define the *interior* of A to be the largest open set which is contained in A. Now consider \mathbb{R} with the usual topology and answer the following questions:
 - (a) Find the interior and the closure of the open interval (0, 1):
 - (b) Find the interior and the closure of \mathbb{Z} , the set of all integers:
 - (c) Find the interior and the closure of \mathbb{Q} , the set of all rational numbers:

Figure 1: The Klein bottle: identify labeled edges with the orientation as shown by the arrows.

2 Manifold and Surface Problems

D Let \mathbb{M} and \mathbb{N} be two connected and compact 2-manifolds without boundary. Conjecture (and then prove) a formula which relates $\chi(\mathbb{M}\#\mathbb{N})$ to $\chi(\mathbb{M})$ and $\chi(\mathbb{N})$. (hint: if you have triangulated both manifolds, what's an easy combinatorial way to form the connected sum?)

- E Consider the Klein bottle as drawn in Figure 1.
 - (a) What topological space is (up to homeomorphism) indicated by the darker strip in the figure? You may assume that the strip is perfectly centered:
 - (b) What topological space is obtained by removing the darker strip?

F Consider the unit sphere $S^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^3 = 1\}$ as a subspace of \mathbb{R}^3 and let n = (0, 0, 1) denote the north pole. Show (by constructing an explicit homeomorphism) that $S^2 - \{n\}$ is homeomorphic to \mathbb{R}^2 .