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1 Overview

Today we have two main goals:
¢ Define the homology groups of a simplicial complex.

e Give the matrix reduction algorithm for computing the hoogy groups of a
simplicial complex.

2 Review: Vector Space Terminology

Here we recall some standard definitions and terminology finear algebra. First
a setV along with a notion of addition+ forms anAbelian group if the following
properties are satisfied

e v, v eVimplyv+v eV

e v+v =v+ov,(v+v)+v" =v+ (v +0").

e There exists a neutral eleméent V which satisfies) + 0 = v for everyv € V.
e Foreveryv € V, there is an inverse elememte V such that) + w = 0.

Suppose we also have some field of scalamnd a notion of scalar multiplication
(r € F,v € Vgroup leads torv € V. ThenV is avector space over F if vector
addition and scalar multiplication interact in the expdatgay; we omit further details.

A set of vectorsvy, ..., v, € V forms abasis for V if every element € V can
be written asv = ryv1 + ... + 7,0, for a unique choice of scalars,...,r, € F.
Although V can have many choices of basis, the number of elements inasbelis
can be shown to be fixed; this numbemk(V), is called thedimension or rank of V.

A subsetW C V forms avector subspace of V if it is closed under addition and
scalar multiplication. Given a fixed € V, we define thecoset v + W = {v + w |
w € W}. Thequotient space V/W is then defined to be the set of all such cosets; it
is itself a vector space over the same field, with vector auddefined by(v + W) +
(v + W) = (v+v") + W and scalar multiplication given by(v + W) = (rv) + W.
The neutral element ivV/W is of course justWW = 0 + W. It can be shown that



rank(V/W) = rank(V) — rank(W). If V andU are two vector spaces ovEr we can
form theirdirect sumV @ U = {(v,u) | v € V,u € U}. This is also a vector space
overlF, with vector addition and scalar multiplication defined gamentwise.

A mappingf : V — U between vector spaces is calleda@momorphism (or linear
transformation) if f respects all vector space structure: namelyf(ifv + sv’) =
rf(v) 4+ sf(v') holds for allv,v" € V andr,s € F. We define théernel of such a
mapping byker f = {v € V| f(v) = 0}; note thatker f is a subspace dof. We also
define theimage of this mapping to bém f = {f(v) | v € V}; note thatim f is a
subspace ofl. Finally, it can be shown thatnk(V) = rank(ker f) 4 rank(im f).

3 Simplicial Homology

We now begin the definition of the simplicial homology grodpsa given simplicial
complexk . Our working example is shown in Figure 1.

3.1 Chain Complexes

Fix a dimensiorp and a fieldF. A p-chain is a formal sum ofp-simplices;r;o;,
wherer; € F and the sum is taken over all possiblsimpliceso; € K. The set of
all suchp-chains is denoted’,(K). We can add twg-chains: giverc = 3;r;0; and
d = X;s;0;, we definec+d = 3, (r; + s;) 0. We can also multiplp-chains by scalars
in the obvious way. Henc€),(K') forms a vector space ov&r and is called the group
of p-chains ink’; note that the set gf-simplices forms an obvious basis 16}, (K') but
that other bases are also possible. Hence the ragk @X) is simplyn,, the number
of p-simplices inK. Note that the neutral elementis= >,00;,. Forp < 0 and
p > dim(K), we haveC),(K) = 0 since there are no simplices in those dimensions.
From now on, we will make the simplifying assumption that Gald I is simply
the binary fieldZ/2Z; in this case, @-chain can be thought of as just a collection of
p-simplices and adding twg-chains corresponds to taking the symmetric difference of
the collections.

Boundary maps. For eaclp, there is a homomorphist, : C, — C,,_,. We define
it first on p-simplices, Given @-simplexo = [ug, u1,...,u,] € Cp(K), we define
0p(0) to be the sum of alfp — 1)-dimensional faces af. In other words,

Op(o) = Z?ZO[uO, e Uy, Uy,

where the hat indicates that the is omitted. We then extend the definition @f by
linearity, settingd, (X;0;) = £;0,(0;).

For an example, consider Figure 1. ThenS) = A+ D + E € C(K), while
02(S+T)=0:(8)=0(T)=(A+D+E)+(E+F+G)=A+D+F+G.
Note also thad; (02(S +T)) =h(A+ D+ F+G) =0.



Figure 1:

We often visualize all the boundary maps together in th@¥dtg sequence:

Opt2 Opt1 Op Op—1
S Oy o, oy

It is easy to see (and easy to believe from the above exantae),t o 9,1 = 0 for
every integep. This implies thaim 0,1 is a subspace dfer J,.

3.2 Cycles, Boundaries, Homology

Using the boundary maps, we now distinguish two specialsygfechains and use
them to define homology groups. First we define@cleto be ap-chain with empty
boundary, that is¢ € C,,(K) is ap-cycle iff 0,(c) = 0. The set of all such-cycles
forms a subspace @f,(K'), which we denote a&,(K) = ker d,; we set its rank to
zp. For the complex in Figure 1, we see that the group-of/clesZ, (K) contains
the chainsB+ C + D, A+ D + F + G, as well as many more. On the other hand,
Z,(K) = 0 as can be seen by direct computation. Finally, every sitigleain forms
a0-cycle, sinceC_; (K) = 0.

Given ap-chainc € C,(K), we say that is ap-boundary if there existsd €
Cp41(K) such thate = 9,41(d). The set ofp-boundaries also forms a subspace of
Cp(K), and we denote it b, (K) = im 9, 1; we set its rank té,,. Again referring
to Figure 1, we note for example thatb € By(K), sincea+b = 01 (4). Furthermore,
thel-cycle A+ D + F + G is also al-boundary, while thé-cycle B+ C + D is not a
1-boundary. From the remark above, it follows that eyetyoundary is also a-cycle;
that is,B,(K) is a subspace &, (K).

Using this fact, we define theth homology group of K to beH,(K) = Z,,(K) /B, (K).
The rank of this group is called theth Betti number of K, 3, = rank(H,(K)). Note
that 5, = z, — b,. (note also that, = 2, + b,_1) The elements oH, are called
p-dimensional homology classes, and they correspond tas0$eB,,, wherec is ap-
cycle. Any two cycles in the same class are called homolaggute that, ¢’ € Z,(K)
are homologous iff there is@ + 1)-chaind such that + ¢ = 9(d).

For example, consider the threeyclesy, = B+C+D, vy, = B+C+F+G+A,
andvs = A+ D + E in Figure 1. The first two of these are homologous, since
7 + 72 = 0(S 4+ T), and so they represent the same homology class. On the other
hand,y3 is homologous to zero, sineg = 9(S); we say thaty; represents the trivial



homology class. We will see soon that evérgycle in K is homologous either to zero
or to v1; in other words,3; (K) = 1. On the other hand, it is also easy to see that
B2 (K) = 0 (there are no non-zemcycles to begin with!) and thaty (K) = 1.

Fun Factsabout Homology Here are some amazing facts that we do not even begin
to prove, although we will gesture at a proof of some of themt time:

e Despite their definition, the homology groups do not depamdiwice of trian-
gulation. In other words, no matter how we triangulate amgiepological space,
we will always get the same groups!

e Homology is a homeomorphism invariant.

e Even stronger: homology is a homotopy type invariant.
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I n-Class Exercises

A Let K consist of the boundary of a tetrahedron (so tRatriangulates &2-
sphere). Prove formally thdy(K) = Z/27Z = Hy(K). Convince yourself
that /1, (K') = 0 (‘a formal proof will come after the break):

B Let K be an arbitrary simplicial complex of dimensignand let K* be the
i-skeleton, with0 < i < k. Conjecture a relationship betweeh,(K*) and
H, (K), for all p # i. (hint: look very closely at the definitions!)

C Let K consist of the disjoint union of two simplicial complexé&s and K.
Conjecture a relationship betweblp (K'), H,(K’), andH,, (K"):



5 Matrix Reduction

We now give an algorithm which finds the Betti numbers, aneé@atifinds bases for
each homology group, for any simplicial complex. First weduce a matrix to rep-
resent each boundary homomorphigpmand then we reduce them to a simple form.
From now on we assume a fixed simplicial compléxand drop all mention of it from
our notation.

Boundary Matrices Recall thatd, : C,, — C,_; is a linear transformation which
takes eachp-simplex to the sum of it§p — 1)-dimensional faces. Every linear trans-
formation can be represented by a matrix, once we fix a basihidodomain and the
target spaces. We choose the sei-sfimplices as a basis f@r, and the set ofp — 1)-
simplices as a basis f@r,_,, and we select some arbitrary but fixed ordering of these
simplices. In these ordered basésjs represented by th@oundary matrix D,, = [a{]
which hasn,,_, rows andn, columns; each row is indexed by(a— 1)-simplex and
each column is indexed byasimplex. Thej-th column contains a for each row
indexed by ap — 1)-face of thej-th p-simplex, and all other entries are zero. For
example, the matridD, corresponding to the complex in Figure 1 is drawn below:

We note that a collection of columns i, represents a-chain and the sum of
those columns represents the boundary of that chain.

Row and Column Operations We now want to calculate bases, and the rank, for
the cycle groupZ,, and the boundary group,,. Recall that the former group is the
kernel ofd, and hence the set of vectors whi€h, sends to zero. We now perform
some operations of, to make these vectors more apparent. We confine ourselves to
two column operations which modif,, without changing any ranks, and we do so by

right-multiplying D,, by a matrixV' = [v/]:

e exchange colum# with columnl; herevt = oF = 1, 0! = 1, foralli # k,1
and all other entries zero.

e replace columr with the sum of columrk and columni: herevl = 1,0 = 1
for all 7, and all other entries zero.



The first column operation just swaps the name of basis elemehile the second
replaces the-th basis element with the sum of tketh and the-th, or by the sum of
whatever the two columns represented before the operation.

~We can also perform two row operations, each done by leftiptying by U =
[ul]:
e exchange row# andl: ul, = uf = 1, u! = 1, for all i # k,l and all other
entries zero.

e replace row with the sum of rowk and rowl: hereuf = 1, u! = 1 for all 4, and
all other entries zero.

The second row operation replaces thth basis element with the sum of theth and
[-th, or by whatever these rows represented before the oper&tote that after every
such operation, we still have valid bases grand forC,,_;.

Smith Normal Form The end goal is to put our matrix infamith Normal Form V,,,
which means a form where some initial segment of the diag@mnaderhaps the entire
diagonal) isl and the rest of the matrix is zero, as shown below:

We recall that the number of columns of this matrixask(C,) = n, = b,_1 +
zp. We arrange it so that the leftmosf_; columns have ones on the diagonal and
the rightmostz, columns are all zero. Then the latter columns repregectiains
which have zero boundary; in other words, basis elemen,fof he former represent
p-chains whose non-zero boundaries form a basisBfor; Hence, by reducing the
matricesD, for all p into Smith normal form, we can extract the numbegsandb,,
and thus the Betti numbers, = z, — b, for everyp.

To actually produce basses i and forB,_, we can keep track of the row and
column operations. Writing the Smith Normal Form &g = U,_,D,V},, we can
show that the last,, columns ofV, give a basis foZ,, and the firs,_; columns of
U, give a basis foB,_;.



Reduction process and example How do we reduce),, into Smith Normal Form?
This is easy. First we perform exchanges to movieta the top left corner. Using
this 1, we destroy the first column and the first row. We then recursthe smaller
submatrix obtained by removing the first column and the fiogt. r It's not hard to
see that this reduction takes time at most cubic in the nurbsimplices. We now
perform the algorithm for the three boundary matriégs D, , and D,, corresponding
the 2-dimensional simplicial complex in Figure 1



6 MoreExercises

Turn your brain off and produce and then reduce the boundatyicas for the follow-
ing simplicial complexes. Read the Betti numbers from yasveer. If you're feeling
adventurous, also read off bases for the cycle and boundawps:

A your favorite triangulation of a three-dimensional clddeall (answer: 5, =

1,61 =02=03=0):

B your favorite triangulation of the-sphere §y = 82 = 1, 81 = 0):

C your favorite triangulation of the torug{ = 5, = 1, 5; = 2):
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