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1 Overview

Today we have two main goals:

• Define the homology groups of a simplicial complex.

• Give the matrix reduction algorithm for computing the homology groups of a
simplicial complex.

2 Review: Vector Space Terminology

Here we recall some standard definitions and terminology from linear algebra. First
a setV along with a notion of addition+ forms anAbelian group if the following
properties are satisfied

• v, v′ ∈ V imply v + v′ ∈ V

• v + v′ = v′ + v, (v + v′) + v′′ = v + (v′ + v′′).

• There exists a neutral element0 ∈ V which satisfiesv + 0 = v for everyv ∈ V.

• For everyv ∈ V, there is an inverse elementw ∈ V such thatv + w = 0.

Suppose we also have some field of scalarsF and a notion of scalar multiplication
(r ∈ F, v ∈ V group leads torv ∈ V. ThenV is a vector space over F if vector
addition and scalar multiplication interact in the expected way; we omit further details.

A set of vectorsv1, . . . , vn ∈ V forms abasis for V if every elementv ∈ V can
be written asv = r1v1 + . . . + rnvn for a unique choice of scalarsr1, . . . , rn ∈ F.
AlthoughV can have many choices of basis, the number of elements in sucha basis
can be shown to be fixed; this number,rank(V), is called thedimension or rank of V.

A subsetW ⊆ V forms avector subspace of V if it is closed under addition and
scalar multiplication. Given a fixedv ∈ V, we define thecoset v + W = {v + w |
w ∈ W}. Thequotient space V/W is then defined to be the set of all such cosets; it
is itself a vector space over the same field, with vector addition defined by(v + W ) +
(v′ + W ) = (v + v′) + W and scalar multiplication given byr(v + W ) = (rv) + W .
The neutral element inV/W is of course justW = 0 + W. It can be shown that
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rank(V/W) = rank(V) − rank(W). If V andU are two vector spaces overF, we can
form theirdirect sum V ⊕ U = {(v, u) | v ∈ V, u ∈ U}. This is also a vector space
overF, with vector addition and scalar multiplication defined componentwise.

A mappingf : V → U between vector spaces is called ahomomorphism (or linear
transformation) iff respects all vector space structure: namely, iff(rv + sv′) =
rf(v) + sf(v′) holds for allv, v′ ∈ V andr, s ∈ F. We define thekernel of such a
mapping byker f = {v ∈ V | f(v) = 0}; note thatker f is a subspace ofV. We also
define theimage of this mapping to beim f = {f(v) | v ∈ V}; note thatim f is a
subspace ofU. Finally, it can be shown thatrank(V) = rank(ker f) + rank(im f).

3 Simplicial Homology

We now begin the definition of the simplicial homology groupsfor a given simplicial
complexK. Our working example is shown in Figure 1.

3.1 Chain Complexes

Fix a dimensionp and a fieldF. A p-chain is a formal sum ofp-simplicesΣiriσi,
whereri ∈ F and the sum is taken over all possiblep-simplicesσi ∈ K. The set of
all suchp-chains is denotedCp(K). We can add twop-chains: givenc = Σiriσi and
d = Σisiσi, we definec+d = Σi(ri +si)σi. We can also multiplyp-chains by scalars
in the obvious way. HenceCp(K) forms a vector space overF, and is called the group
of p-chains inK; note that the set ofp-simplices forms an obvious basis forCp(K) but
that other bases are also possible. Hence the rank ofCp(K) is simplynp, the number
of p-simplices inK. Note that the neutral element is0 = Σi0σi. For p < 0 and
p > dim(K), we haveCp(K) = 0 since there are no simplices in those dimensions.

From now on, we will make the simplifying assumption that ourfield F is simply
the binary fieldZ/2Z; in this case, ap-chain can be thought of as just a collection of
p-simplices and adding twop-chains corresponds to taking the symmetric difference of
the collections.

Boundary maps. For eachp, there is a homomorphism∂p : Cp → Cp−1. We define
it first on p-simplices, Given ap-simplexσ = [u0, u1, . . . , up] ∈ Cp(K), we define
∂p(σ) to be the sum of all(p − 1)-dimensional faces ofσ. In other words,

∂p(σ) = Σp
j=0

[u0, . . . , ûj , . . . , up],

where the hat indicates that theuj is omitted. We then extend the definition of∂p by
linearity, setting∂p(Σiσi) = Σi∂p(σi).

For an example, consider Figure 1. Then∂2(S) = A + D + E ∈ C1(K), while
∂2(S + T ) = ∂2(S) = ∂2(T ) = (A + D + E) + (E + F + G) = A + D + F + G.
Note also that∂1(∂2(S + T )) = ∂1(A + D + F + G) = 0.
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Figure 1:

We often visualize all the boundary maps together in the following sequence:

. . . Cp+1 Cp Cp−1
. . .//

∂p+2
//

∂p+1
//

∂p

//

∂p−1

It is easy to see (and easy to believe from the above example) that∂p ◦ ∂p+1 = 0 for
every integerp. This implies thatim ∂p+1 is a subspace ofker ∂p.

3.2 Cycles, Boundaries, Homology

Using the boundary maps, we now distinguish two special types of chains and use
them to define homology groups. First we define ap-cycle to be ap-chain with empty
boundary, that is,c ∈ Cp(K) is ap-cycle iff ∂p(c) = 0. The set of all suchp-cycles
forms a subspace ofCp(K), which we denote asZp(K) = ker ∂p; we set its rank to
zp. For the complex in Figure 1, we see that the group of1-cyclesZ1(K) contains
the chainsB + C + D,A + D + F + G, as well as many more. On the other hand,
Z2(K) = 0 as can be seen by direct computation. Finally, every single0-chain forms
a0-cycle, sinceC−1(K) = 0.

Given ap-chain c ∈ Cp(K), we say thatc is a p-boundary if there existsd ∈
Cp+1(K) such thatc = ∂p+1(d). The set ofp-boundaries also forms a subspace of
Cp(K), and we denote it byBp(K) = im ∂p+1; we set its rank tobp. Again referring
to Figure 1, we note for example thata+b ∈ B0(K), sincea+b = ∂1(A). Furthermore,
the1-cycleA+D +F +G is also a1-boundary, while the1-cycleB +C +D is not a
1-boundary. From the remark above, it follows that everyp-boundary is also ap-cycle;
that is,Bp(K) is a subspace ofZp(K).

Using this fact, we define thep-th homology group of K to beHp(K) = Zp(K)/Bp(K).
The rank of this group is called thep-th Betti number of K, βp = rank(Hp(K)). Note
that βp = zp − bp. (note also thatnp = zp + bp−1) The elements ofHp are called
p-dimensional homology classes, and they correspond to cosetsc + Bp, wherec is ap-
cycle. Any two cycles in the same class are called homologous; note thatc, c′ ∈ Zp(K)
are homologous iff there is a(p + 1)-chaind such thatc + c′ = ∂(d).

For example, consider the three1-cyclesγ1 = B+C+D, γ2 = B+C+F +G+A,
and γ3 = A + D + E in Figure 1. The first two of these are homologous, since
γ1 + γ2 = ∂(S + T ), and so they represent the same homology class. On the other
hand,γ3 is homologous to zero, sinceγ3 = ∂(S); we say thatγ3 represents the trivial
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homology class. We will see soon that every1-cycle inK is homologous either to zero
or to γ1; in other words,β1(K) = 1. On the other hand, it is also easy to see that
β2(K) = 0 (there are no non-zero2-cycles to begin with!) and thatβ0(K) = 1.

Fun Facts about Homology Here are some amazing facts that we do not even begin
to prove, although we will gesture at a proof of some of them next time:

• Despite their definition, the homology groups do not depend on choice of trian-
gulation. In other words, no matter how we triangulate a given topological space,
we will always get the same groups!

• Homology is a homeomorphism invariant.

• Even stronger: homology is a homotopy type invariant.
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4 In-Class Exercises

A Let K consist of the boundary of a tetrahedron (so thatK triangulates a2-
sphere). Prove formally thatH2(K) = Z/2Z = H0(K). Convince yourself
thatH1(K) = 0 ( a formal proof will come after the break):

B Let K be an arbitrary simplicial complex of dimensionk and letKi be the
i-skeleton, with0 ≤ i < k. Conjecture a relationship betweenHp(K

i) and
Hp(K), for all p 6= i. (hint: look very closely at the definitions!)

C Let K consist of the disjoint union of two simplicial complexesK ′ andK ′′.
Conjecture a relationship betweenHp(K),Hp(K

′), andHp(K
′′):
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5 Matrix Reduction

We now give an algorithm which finds the Betti numbers, and indeed finds bases for
each homology group, for any simplicial complex. First we produce a matrix to rep-
resent each boundary homomorphism∂p and then we reduce them to a simple form.
From now on we assume a fixed simplicial complexK and drop all mention of it from
our notation.

Boundary Matrices Recall that∂p : Cp → Cp−1 is a linear transformation which
takes eachp-simplex to the sum of its(p − 1)-dimensional faces. Every linear trans-
formation can be represented by a matrix, once we fix a basis for the domain and the
target spaces. We choose the set ofp-simplices as a basis forCp and the set of(p− 1)-
simplices as a basis forCp−1, and we select some arbitrary but fixed ordering of these
simplices. In these ordered bases,∂p is represented by theboundary matrix Dp = [aj

i ]
which hasnp−1 rows andnp columns; each row is indexed by a(p − 1)-simplex and
each column is indexed by ap-simplex. Thej-th column contains a1 for each row
indexed by a(p − 1)-face of thej-th p-simplex, and all other entries are zero. For
example, the matrixD1 corresponding to the complex in Figure 1 is drawn below:

We note that a collection of columns inDp represents ap-chain and the sum of
those columns represents the boundary of that chain.

Row and Column Operations We now want to calculate bases, and the rank, for
the cycle groupZp and the boundary groupBp. Recall that the former group is the
kernel of∂p and hence the set of vectors whichDp sends to zero. We now perform
some operations onDp to make these vectors more apparent. We confine ourselves to
two column operations which modifyDp without changing any ranks, and we do so by
right-multiplyingDp by a matrixV = [vj

i ]:

• exchange columnk with columnl; herevl
k = vk

l = 1, vi
i = 1, for all i 6= k, l

and all other entries zero.

• replace columnl with the sum of columnk and columnl: herevl
k = 1, vi

i = 1
for all i, and all other entries zero.
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The first column operation just swaps the name of basis elements, while the second
replaces thel-th basis element with the sum of thek-th and thel-th, or by the sum of
whatever the two columns represented before the operation.

We can also perform two row operations, each done by left-multiplying by U =
[uj

i ]:

• exchange rowsk and l: ul
k = uk

l = 1, ui
i = 1, for all i 6= k, l and all other

entries zero.

• replace rowl with the sum of rowk and rowl: hereuk
l = 1, ui

i = 1 for all i, and
all other entries zero.

The second row operation replaces thek-th basis element with the sum of thek-th and
l-th, or by whatever these rows represented before the operation. Note that after every
such operation, we still have valid bases forCp and forCp−1.

Smith Normal Form The end goal is to put our matrix intoSmith Normal Form Np,
which means a form where some initial segment of the diagonal(or perhaps the entire
diagonal) is1 and the rest of the matrix is zero, as shown below:

We recall that the number of columns of this matrix isrank(Cp) = np = bp−1 +
zp. We arrange it so that the leftmostbp−1 columns have ones on the diagonal and
the rightmostzp columns are all zero. Then the latter columns representp-chains
which have zero boundary; in other words, basis elements forZp. The former represent
p-chains whose non-zero boundaries form a basis forBp−1 Hence, by reducing the
matricesDp for all p into Smith normal form, we can extract the numberszp andbp,
and thus the Betti numbersβp = zp − bp for everyp.

To actually produce basses forZp and forBp−1, we can keep track of the row and
column operations. Writing the Smith Normal Form asNp = Up−1DpVp, we can
show that the lastzp columns ofVp give a basis forZp and the firstbp−1 columns of
U−1

p−1 give a basis forBp−1.
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Reduction process and example How do we reduceDp into Smith Normal Form?
This is easy. First we perform exchanges to move a1 to the top left corner. Using
this 1, we destroy the first column and the first row. We then recurse on the smaller
submatrix obtained by removing the first column and the first row. It’s not hard to
see that this reduction takes time at most cubic in the numberof simplices. We now
perform the algorithm for the three boundary matricesD0,D1, andD2, corresponding
the2-dimensional simplicial complex in Figure 1
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6 More Exercises

Turn your brain off and produce and then reduce the boundary matrices for the follow-
ing simplicial complexes. Read the Betti numbers from your answer. If you’re feeling
adventurous, also read off bases for the cycle and boundary groups:

A your favorite triangulation of a three-dimensional closed ball (answer:β0 =
1, β1 = β2 = β3 = 0):

B your favorite triangulation of the2-sphere (β0 = β2 = 1, β1 = 0):

C your favorite triangulation of the torus (β0 = β2 = 1, β1 = 2):
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