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1 Overview

Last week, we defined the simplicial homology groups of antridated space and gave
a matrix reduction algorithm for their computation. Thisekewe will:

e Discussfunctoriality: how continuous maps between topological spaces induce
algebraic maps between their respective homology groups.

e Give a slightly different definition of homology, callsthgular homology, which
is not so intimately tied to a triangulation.

e Define and compute thelative homology groups for pairs of spaces.

2 Functoriality

Now we come to probably the mostimportant property of horggidhe fact that maps
between spaces induce maps between homology groups. Wailbastrate this first
for simplicial maps between simplicial complexes. The vehdiscussion becomes a
lot cleaner after we define singular homology groups.

Induced maps. Suppose we have a simplicial mgp: K — L between two sim-
plicial complexes; recall that this meagismaps each simplex in K linearly onto
some simplex, of the same or lower dimensigiig) of L. For each integep, we
thus see thaff mapsp-chains in K to p-chains inL. Formally, given ap-chain
¢ = X;a,0; € Cp(K), we definefy(o) = a7 € Cy(L), wheret; = f(o;) if
f (o) also has dimensiop, andt; = 0 if f(o;) has dimension less than

Note that this defines homomorphisifis : C,(K) — C,(L) in each dimension
p. We also have, for eagh, the two boundary map3/* : C,(K) — C,_1(K) and
df - Cp(L) — Cp1(L). And itis easy to see that, commutes with these two
boundary maps@ﬁ ofy=fu oa{f. In other words f» has the defining characteristic
of achain map between two chain complexes.



Figure 1: K is on the left,L is on the right, and the map is indicated by the labelling.

Hence f, maps cycles to cycles and boundaries to boundarfgsZ, (X)) C
Z,(L) and fx(B,(K)) € B,(L). In other words,f% induces a map on homology
groups, which we denote by, : H,(K) — H,(L); note that although we have
dropped all mention op for notational clarity, there is really one mgp for each
dimensionp.

Example. Probably the easiest situation to understood is a homolagy imduced
by an injective map, as illustrated in Figure 1. On the lefthage a simplicial complex
K and on the right we have. We definef : K — L in such a way the labelled edges
in Figure 1 correspond. Note that in this case, our rfiag@merely a way to mentally
include K as a subcomplex af, and the chain mapy performs a similar service for
chains. The induced homology mdpis more interesting, and we’ll discuss it in each
dimension.

e f.: Ho(K) — Ho(L) is an isomorphism: each complex has only one compo-
nent, andf (K') contains a representative of this component.

e Notice thatH; (K) andH; (L) are both rank one, but thgf : H, (K) — Hy (L)
is not an isomorphism, because it has a non-zero kernel: Ipaheehomology
class inH; (K) represented by thechainy = A + B + C. This class does not
bound inK, but it does bound i, sincey = 94 (S), and hencef.(y) = 0.
Note also that thé-dimensional homology class iy represented b§/ + D+ E,
is not in the image of..

e There are n@-dimensional classes in either complex,f5a Ho(K) — Ha(L)
is an isomorphism for trivial reasons.

As we'll see in a few weeks, homology maps induced by inclusiwill be the main
theoretical tool needed for the definition of persistent blagy.

Functorial properties. The fact that a continuous map between topological spaces
(or a simplicial map between simplicial complexes, butiigally the same thing as
we've seen!) induces an homomorphism between homologypgrizuincredibly im-
portant: basically, it means that we can associate algelata to each space, and
then attempt to transfer this information from space to gpaorder to make compar-
isons. The following two properties show that this inforioattransfer takes place in

a consistent manner:



e Let K be a simplicial complex andl: K — K denote the identity map given
by i(v) = v for all vertices inK. Then the induced maj is also the identity
homomorphism.

e Letf: K — Landg : L — M be two maps between simplicial complexes, and
consider the compositiofy o f) : K — M. Then(go f). = g« o fx; in other
words, the induced map of the composition is the compositiotihe induced
maps.

As an easy consequence of these two properties, we havelliheifig essential fact:
if f: K — L isahomeomorphism, thefy : H,(K) — H,(L) is an isomorphism for
everyp.

proof:

This is most useful in the contrapositive. For example, wermaw show that the
sphereS? is not homeomorphic to the tords?, since there can never be an isomor-
phism betweet; (S?) = 0 andH:(1T?) = Z/2Z ® 7Z./27Z.

In fact, something much more powerful is trueyfifh : K — L are two homotopic
maps, then the induced maps are equfal= h.. From this, we see that a homotopy
equivalence will also induce a homology isomorphism. He$itand7? are not even
homotopically equivalent!

3 Singular Homology

So far, we have defined homology in terms of various sets gflgies which arise from
a given triangulation of a topological space. Although thisecessary for algorithmic
purposes, it is also theoretically cumbersome; we do natadlgtwant to mentally
triangulate a space every time we wish to think about its Hogyogroups! Fortunately,
there’s a way around this problem, although we are forcedetd With yet one more
level of abstraction.

Let X be a topological space, and for each integelet A? denote the standard
p-simplex with the topology inherited from Euclidean spadesingular p-simplex in
X is a continuous mapping : A? — X.

We can formally add singular-simplices to form singulap-chains, and the set of
such chains forms a vector spaggX), called thep-th singular chain group ii. As
before, the chain groups are connected by boundary m@ps:S,(X) — S,-1(X),
defined on a basis as follows. Given a singylasimplexos : AP — X, we define
0p(0) to be the formal sum of the singulgr — 1)-simplices obtained by restricting the
mapo to each of thép — 1)-faces ofA? in turn.



Finally, we can define singularcycles and singulap-boundaries exactly as be-
fore, and then define theth singular homology group dX, H,(X), to bep-cycles
modulop-boundaries, again exactly as before. Here are severalriemidacts about
singular homology:

e Amazingly, the singular homology groups of a triangulalgaceX are isomor-
phic to the simplicial homology groups of any simplicial golex which trian-
gulatesX.

e As defined, the singular homology groups are clearly notrélyoically com-
putable (for one, the vector spacgs(X) are uncountably infinite in dimen-
sion!); on the other hand, they’re useful for mental arittimeand we will see
later that there are some systematic ways of understaniamg. t

Functoriality. Induced maps are much easier to understand in the contdrigofigr
homology. Letf : X — Y be a continuous map between topological spaces and let
o : AP — X be a singulap-simplex inX. Then fx (o) is defined to be the singular
p-simplex inY given by the compositioif o o : A? — Y.

Application. As a simple demonstration of what can be shown with thesesjdea
prove the following famous theorem in all dimensions. Bétdenote the closed-
dimensional unit ball.

BROUWERS'S FIXED-POINT THEOREM: every continuous map B¢ — B¢
has a fixed point.

proof: for purposes of contradiction, suppose that we hawerginuous mayy :
B¢ — B? which satisfiesf (z) # « for all z € B<. Hence for every, there is a unique
ray starting aff (z), passing through, and ending at some poinfz) on the boundary
sphereS?—!. Mapping eachr to itsr(z) in this manner, we define another continuous
mapr : B¢ — S4-1,

Now let : S4=1 — S9! be the identity map on the sphere andile§?~! — B¢
denote the inclusion of the sphere into the ball. Note thatcttmposition- o i = I,
and so, applying the second functoriality property above getr. o i, = I, for all
dimensions. Let’s focus on dimensiop = d — 1. By the first property above, we
know thatZ, : Hg_;(S?') — Hyz_1(S% 1) takes the non-zero (in fact, rank one)
homology group of the sphere onto itself. On the other hand, Hy_; (S4!) —
Hq_1(B%) = 0 must be the zero map, since the target is the zero group! Heace
have factored an isomorphism through a zero map, which neuatdontradiction.=
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In-Class Exercises
/b
a

A Referring to the figure above, |étf consist of the verticeg andb, and let be
the edgeF along with its vertices. Let: K — L denote the inclusion map.

(@) |Si#(a) = Z#(b)'?
(b) Leta, 8 € Ho(K) denote the homology classes represented andb,

respectively. I9, («) = i.(0)?. What isi.(« + 5)?

B Look at Figure 1 again. Can you find a simplicial map K — L such thaty.
is an isomorphism for every dimensipf



Figure 2:X is the annulus, anX, is the union of the outer and inner circles

5 Relative Homology

The homology groups measure the higher-order connectifyspaceX, counting, in
some well-defined algebraic sense, the number of compaqrtentels, voids, and so
forth in X. On the other hand, suppose we have a nested pair of s(fcEg) with
Xo C X, or pair of simplicial complexesK, Kj) with K, a subcomplex of. The
relative homology groups of this pair will measure the connectivity of the &agpace
relative to the small space, in a sense we now define. If andtgiin is needed, we will
useabsolute homology to refer to the homology of a single space.

Definition We give the simplicial definition and leave the obvious siagghanges
to you. Assume we have a nested pair of subcompléked<y,). The key concept is
that ofrelative chain groups: for everyp, we defineC, (K, Ky) = C,(K)/C,(Kp). In
other words, a relative-chain is a coset+ C, (Kj). Thus, twop-chainse, ¢ € C,(K)
define the same relatiyechain iff their difference consists entirely pfsimplices in
K,. For eachp, we have a boundary mayp, : C,(K, Ky) — C,—1(K, K() which
comes from the boundary map dn: on each coset, we defir# (c + C,(Ky)) =
Op(c) + Cp—1(Kp). Notice that this map is indeed well-defined, since the bamndf
ap-chain inKjy is a(p — 1)-chain inKj.

Now we follow the same algebraic procedures as in the definiti absolute ho-
mology, setting the group of relatiyecyclesZ, (K, K,) = ker 0,, the group of rela-
tive p-boundaries3,, (K, Ky) = im 0,1, and finally thep-th relative homology group
Hy (K, Ko) = Z,,(K, Ko) /B, (K, Ko).

Example To help unpack the definitions above, we work an example irestatail.

Consider the pair of spacéX, X,) whereX is the annulus! x [0, 1] as drawn in Figure
2, andX is the union of the outer and the inner circles. We will mdptabmpute the
relative homology groupl, (X, X,) in all dimensions. To make this easier, we imagine
that we have triangulated in such a way thak, forms a subcomplex; if you don’t
like doing this, then you can also just think of singular cisai



We can show thatly (X, Xo) = 0:

andHl(X,Xo) = Z/2Z

anng(X,Xo) = Z/2Z



Matrix reduction algorithm.  The matrix reduction algorithm for computing the rel-
ative homology groups of a pair of subcomplexés, K,) is almost identical to the
absolute homology algorithm; the only difference lies ie thrdering of the columns
and the interpretation of the reduced form. First we chooserdered basis for each
chain groupC, (K) in such a way that the simplices Id, come first. Then for each

p, We again create a boundary matfi}, to represent the boundary map; note then
the columns and the rows are first indexed by simplices ffgsrand then finally by
simplices inK — K. We then reduce the matrix to Smith Normal Form exactly as
before, as shown below. But now we are only interested indhet right submatrix
indexed by simplices i’ — K:

The form of the algorithm makes an important fact apparempp8se have a further
pair of subcomplexe€L, Ly) which satisfies the inclusions C K, Ly C Ky, and the
equalityL — Ly = K — K.

In this case, the EXCISION THEOREM says that the pair havean@phic relative
homology groups; that i1, (K, Ko) = H,(L, Lo) for all dimensiong. For a proof,
we need only look at the matrix reduction above. We can oltterboundary matrix
for L by removing all rows and columns which correspond to singglion X' — L. But
it's easy to see thak’ — L. = K, and thus our row and column removal only affects
the irrelevant upper left submatrix.



Figure 3:X = Y is the torus, and is everything below the thick line.

Maps of pairs. Recall that a continuous (or simplicial) map between togicial
spaces (or simplicial complexes) induces a homomorphigmdsn absolute homol-
ogy groups. The same thing happens for relative homologyeNdececisely, suppose
that we have a continuoumsap of pairs f : (X, Xy) — (Y, Yy); this means a continu-
ous mapf : X — Y with the property thay (X,) C Y. As before we can map every
chain inX to a chain inY, but we also note that every chainXy maps to one irfv,.

In other words, for each we have a chain map. : C,(X,X,) — C,(Y,Y,) which
leads to a map between relative homology grofipsH, (X, Xy) — H, (Y, Yy).

For a simple example, consider the map of pair§X, @) — (X, Xy), whereX the
2-torus andX is everything sitting below the thick line in Figure 3. We dele the
induced relative homology homomorphispt, (X) — H, (X, X,) in every dimension
p.

Forp = 0, we note thatH(X) is rank one, whileH, (X, X,) is trivial, and soi.
must be the zero map in this dimension.

Forp = 1, the groupH; (X) is rank two; let’s take as a basis the homology class
« represented by the loop drawn in Figure 3 and the homologg Glaepresented by
the meridian circle. Itis easy to see thata) = 0, sincea has a representative K.
On the other hand,. () is in fact just the generator of the rank-one gréugX, Xo).
Thus, in dimension oné, is surjective and has a rank-one kernel.

Forp = 2, the groupH»(X) is rank one, with generator represented by the entire
torus; this generator maps via to the generator of the rank-one grodp(X, X).
Hencei, is an isomorphism in dimension two.



6 Even More Exercises

A Compute (at least mentally) the relative homology grodpéB?, S'), where we
think of the circleS' as the boundary of the clos@edimensional unit balB?.
Generalize your answer to arbitrary dimension:

B Consider the annuluX as drawn in Figure 2 and recall th& is the union of
the inner and the outer circles. Recall that we have alreathpatedH,, (X, X)
in every dimension.

e Compute the absolute homology grous(X,) andH,, (X):

e Let: denote the inclusion af into X and; denote the inclusion of pairs
(X,9) — (X,Xp). Prove thaim i, = ker j,:
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