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1 Overview

Last week, we defined the simplicial homology groups of a triangulated space and gave
a matrix reduction algorithm for their computation. This week, we will:

• Discussfunctoriality: how continuous maps between topological spaces induce
algebraic maps between their respective homology groups.

• Give a slightly different definition of homology, calledsingular homology, which
is not so intimately tied to a triangulation.

• Define and compute therelative homology groups for pairs of spaces.

2 Functoriality

Now we come to probably the most important property of homology: the fact that maps
between spaces induce maps between homology groups. We’ll demonstrate this first
for simplicial maps between simplicial complexes. The whole discussion becomes a
lot cleaner after we define singular homology groups.

Induced maps. Suppose we have a simplicial mapf : K → L between two sim-
plicial complexes; recall that this meansf maps each simplexσ in K linearly onto
some simplex, of the same or lower dimension,f(σ) of L. For each integerp, we
thus see thatf mapsp-chains inK to p-chains inL. Formally, given ap-chain
c = Σiaiσi ∈ Cp(K), we definef#(σ) = Σiaiτi ∈ Cp(L), whereti = f(σi) if
f(σi) also has dimensionp, andti = 0 if f(σi) has dimension less thanp.

Note that this defines homomorphismsf# : Cp(K) → Cp(L) in each dimension
p. We also have, for eachp, the two boundary maps∂K

p : Cp(K) → Cp−1(K) and
∂L

p : Cp(L) → Cp−1(L). And it is easy to see thatf# commutes with these two
boundary maps:∂L

p ◦f# = f# ◦∂K
p . In other words,f# has the defining characteristic

of a chain map between two chain complexes.
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Figure 1:K is on the left,L is on the right, and the map is indicated by the labelling.

Hencef# maps cycles to cycles and boundaries to boundaries:f#(Zp(K)) ⊆

Zp(L) andf#(Bp(K)) ⊆ Bp(L). In other words,f# induces a map on homology
groups, which we denote byf∗ : Hp(K) → Hp(L); note that although we have
dropped all mention ofp for notational clarity, there is really one mapf∗ for each
dimensionp.

Example. Probably the easiest situation to understood is a homology map induced
by an injective map, as illustrated in Figure 1. On the left wehave a simplicial complex
K and on the right we haveL. We definef : K → L in such a way the labelled edges
in Figure 1 correspond. Note that in this case, our mapf is merely a way to mentally
includeK as a subcomplex ofL, and the chain mapf# performs a similar service for
chains. The induced homology mapf∗ is more interesting, and we’ll discuss it in each
dimension.

• f∗ : H0(K) → H0(L) is an isomorphism: each complex has only one compo-
nent, andf(K) contains a representative of this component.

• Notice thatH1(K) andH1(L) are both rank one, but thatf∗ : H1(K) → H1(L)
is not an isomorphism, because it has a non-zero kernel: namely the homology
class inH1(K) represented by the1-chainγ = A + B + C. This class does not
bound inK, but it does bound inL, sinceγ = ∂L

2 (S), and hencef∗(γ) = 0.
Note also that the1-dimensional homology class inL, represented byC+D+E,
is not in the image off∗.

• There are no2-dimensional classes in either complex, sof∗ : H2(K) → H2(L)
is an isomorphism for trivial reasons.

As we’ll see in a few weeks, homology maps induced by inclusions will be the main
theoretical tool needed for the definition of persistent homology.

Functorial properties. The fact that a continuous map between topological spaces
(or a simplicial map between simplicial complexes, but it’sreally the same thing as
we’ve seen!) induces an homomorphism between homology groups is incredibly im-
portant: basically, it means that we can associate algebraic data to each space, and
then attempt to transfer this information from space to space in order to make compar-
isons. The following two properties show that this information transfer takes place in
a consistent manner:
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• Let K be a simplicial complex andi : K → K denote the identity map given
by i(v) = v for all vertices inK. Then the induced mapi∗ is also the identity
homomorphism.

• Let f : K → L andg : L → M be two maps between simplicial complexes, and
consider the composition(g ◦ f) : K → M . Then(g ◦ f)∗ = g∗ ◦ f∗; in other
words, the induced map of the composition is the compositionof the induced
maps.

As an easy consequence of these two properties, we have the following essential fact:
if f : K → L is a homeomorphism, thenf∗ : Hp(K) → Hp(L) is an isomorphism for
everyp.

proof:

This is most useful in the contrapositive. For example, we can now show that the
sphereS2 is not homeomorphic to the torusT 2, since there can never be an isomor-
phism betweenH1(S

2) = 0 andH1(T
2) = Z/2Z ⊕ Z/2Z.

In fact, something much more powerful is true: iff, h : K → L are two homotopic
maps, then the induced maps are equal:f∗ = h∗. From this, we see that a homotopy
equivalence will also induce a homology isomorphism. HenceS2 andT 2 are not even
homotopically equivalent!

3 Singular Homology

So far, we have defined homology in terms of various sets of simplices which arise from
a given triangulation of a topological space. Although thisis necessary for algorithmic
purposes, it is also theoretically cumbersome; we do not actually want to mentally
triangulate a space every time we wish to think about its homology groups! Fortunately,
there’s a way around this problem, although we are forced to deal with yet one more
level of abstraction.

Let X be a topological space, and for each integerp, let ∆p denote the standard
p-simplex with the topology inherited from Euclidean space.A singular p-simplex in
X is a continuous mappingσ : ∆p → X.

We can formally add singularp-simplices to form singularp-chains, and the set of
such chains forms a vector spaceSp(X), called thep-th singular chain group inX. As
before, the chain groups are connected by boundary maps:∂p : Sp(X) → Sp−1(X),
defined on a basis as follows. Given a singularp-simplexσ : ∆p → X, we define
∂p(σ) to be the formal sum of the singular(p−1)-simplices obtained by restricting the
mapσ to each of the(p − 1)-faces of∆p in turn.
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Finally, we can define singularp-cycles and singularp-boundaries exactly as be-
fore, and then define thep-th singular homology group ofX, Hp(X), to bep-cycles
modulop-boundaries, again exactly as before. Here are several important facts about
singular homology:

• Amazingly, the singular homology groups of a triangulable spaceX are isomor-
phic to the simplicial homology groups of any simplicial complex which trian-
gulatesX.

• As defined, the singular homology groups are clearly not algorithmically com-
putable (for one, the vector spacesSp(X) are uncountably infinite in dimen-
sion!); on the other hand, they’re useful for mental arithmetic, and we will see
later that there are some systematic ways of understanding them.

Functoriality. Induced maps are much easier to understand in the context of singular
homology. Letf : X → Y be a continuous map between topological spaces and let
σ : ∆p → X be a singularp-simplex inX. Thenf#(σ) is defined to be the singular
p-simplex inY given by the compositionf ◦ σ : ∆p → Y.

Application. As a simple demonstration of what can be shown with these ideas, we
prove the following famous theorem in all dimensions. LetB

d denote the closedd-
dimensional unit ball.

BROUWERS’S FIXED-POINT THEOREM: every continuous mapf : B
d → B

d

has a fixed point.

proof: for purposes of contradiction, suppose that we have acontinuous mapf :
B

d → B
d which satisfiesf(x) 6= x for all x ∈ B

d. Hence for everyx, there is a unique
ray starting atf(x), passing throughx, and ending at some pointr(x) on the boundary
sphereSd−1. Mapping eachx to its r(x) in this manner, we define another continuous
mapr : B

d → S
d−1.

Now letI : S
d−1 → S

d−1 be the identity map on the sphere and leti : S
d−1 →֒ B

d

denote the inclusion of the sphere into the ball. Note that the compositionr ◦ i = I,
and so, applying the second functoriality property above, we getr∗ ◦ i∗ = I∗ for all
dimensionsp. Let’s focus on dimensionp = d − 1. By the first property above, we
know thatI∗ : Hd−1(S

d−1) → Hd−1(S
d−1) takes the non-zero (in fact, rank one)

homology group of the sphere onto itself. On the other hand,i∗ : Hd−1(S
d−1) →

Hd−1(B
d) = 0 must be the zero map, since the target is the zero group! Hencewe

have factored an isomorphism through a zero map, which must be a contradiction.
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4 In-Class Exercises

a

bE

A Referring to the figure above, letK consist of the verticesa andb, and letL be
the edgeE along with its vertices. Leti : K → L denote the inclusion map.

(a) Isi#(a) = i#(b)?

(b) Let α, β ∈ H0(K) denote the homology classes represented bya andb,
respectively. Isi∗(α) = i∗(β)?. What isi∗(α + β)?

B Look at Figure 1 again. Can you find a simplicial mapg : K → L such thatg∗
is an isomorphism for every dimensionp?
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Figure 2:X is the annulus, andX0 is the union of the outer and inner circles

5 Relative Homology

The homology groups measure the higher-order connectivityof a spaceX, counting, in
some well-defined algebraic sense, the number of components, tunnels, voids, and so
forth in X. On the other hand, suppose we have a nested pair of spaces(X, X0) with
X0 ⊆ X, or pair of simplicial complexes(K,K0) with K0 a subcomplex ofK. The
relative homology groups of this pair will measure the connectivity of the large space
relative to the small space, in a sense we now define. If a distinction is needed, we will
useabsolute homology to refer to the homology of a single space.

Definition We give the simplicial definition and leave the obvious singular changes
to you. Assume we have a nested pair of subcomplexes(K,K0). The key concept is
that ofrelative chain groups: for everyp, we defineCp(K,K0) = Cp(K)/Cp(K0). In
other words, a relativep-chain is a cosetc+Cp(K0). Thus, twop-chainsc, c′ ∈ Cp(K)
define the same relativep-chain iff their difference consists entirely ofp-simplices in
K0. For eachp, we have a boundary map∂p : Cp(K,K0) → Cp−1(K,K0) which
comes from the boundary map onK: on each coset, we define∂p(c + Cp(K0)) =
∂p(c) + Cp−1(K0). Notice that this map is indeed well-defined, since the boundary of
ap-chain inK0 is a(p − 1)-chain inK0.

Now we follow the same algebraic procedures as in the definition of absolute ho-
mology, setting the group of relativep-cyclesZp(K,K0) = ker ∂p, the group of rela-
tive p-boundariesBp(K,K0) = im ∂p−1, and finally thep-th relative homology group
Hp(K,K0) = Zp(K,K0)/Bp(K,K0).

Example To help unpack the definitions above, we work an example in some detail.
Consider the pair of spaces(X, X0) whereX is the annulusS1×[0, 1] as drawn in Figure
2, andX0 is the union of the outer and the inner circles. We will mentally compute the
relative homology groupHp(X, X0) in all dimensions. To make this easier, we imagine
that we have triangulatedX in such a way thatX0 forms a subcomplex; if you don’t
like doing this, then you can also just think of singular chains.
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We can show thatH0(X, X0) = 0:

andH1(X, X0) = Z/2Z:

andH2(X, X0) = Z/2Z
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Matrix reduction algorithm. The matrix reduction algorithm for computing the rel-
ative homology groups of a pair of subcomplexes(K,K0) is almost identical to the
absolute homology algorithm; the only difference lies in the ordering of the columns
and the interpretation of the reduced form. First we choose an ordered basis for each
chain groupCp(K) in such a way that the simplices inK0 come first. Then for each
p, we again create a boundary matrixDp to represent the boundary map∂p; note then
the columns and the rows are first indexed by simplices fromK0 and then finally by
simplices inK − K0. We then reduce the matrix to Smith Normal Form exactly as
before, as shown below. But now we are only interested in the lower right submatrix
indexed by simplices inK − K0:

The form of the algorithm makes an important fact apparent. Suppose have a further
pair of subcomplexes(L,L0) which satisfies the inclusionsL ⊆ K, L0 ⊆ K0, and the
equalityL − L0 = K − K0.

In this case, the EXCISION THEOREM says that the pair have isomorphic relative
homology groups; that is,Hp(K,K0) ∼= Hp(L,L0) for all dimensionsp. For a proof,
we need only look at the matrix reduction above. We can obtainthe boundary matrix
for L by removing all rows and columns which correspond to simplices inK −L. But
it’s easy to see thatK − L = K0, and thus our row and column removal only affects
the irrelevant upper left submatrix.
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Figure 3:X = Y is the torus, andY0 is everything below the thick line.

Maps of pairs. Recall that a continuous (or simplicial) map between topological
spaces (or simplicial complexes) induces a homomorphism between absolute homol-
ogy groups. The same thing happens for relative homology. More precisely, suppose
that we have a continuousmap of pairs f : (X, X0) → (Y, Y0); this means a continu-
ous mapf : X → Y with the property thatf(X0) ⊆ Y0. As before we can map every
chain inX to a chain inY, but we also note that every chain inX0 maps to one inY0.
In other words, for eachp we have a chain mapf# : Cp(X, X0) → Cp(Y, Y0) which
leads to a map between relative homology groupsf∗ : Hp(X, X0) → Hp(Y, Y0).

For a simple example, consider the map of pairsi : (X, ∅) → (X, X0), whereX the
2-torus andX0 is everything sitting below the thick line in Figure 3. We describe the
induced relative homology homomorphismi∗Hp(X) → Hp(X, X0) in every dimension
p.

For p = 0, we note thatH0(X) is rank one, whileH0(X, X0) is trivial, and soi∗
must be the zero map in this dimension.

For p = 1, the groupH1(X) is rank two; let’s take as a basis the homology class
α represented by the loop drawn in Figure 3 and the homology classβ represented by
the meridian circle. It is easy to see thati∗(α) = 0, sinceα has a representative inX0.
On the other hand,i∗(β) is in fact just the generator of the rank-one groupH1(X, X0).
Thus, in dimension one,i∗ is surjective and has a rank-one kernel.

For p = 2, the groupH2(X) is rank one, with generator represented by the entire
torus; this generator maps viai∗ to the generator of the rank-one groupH2(X, X0).
Hencei∗ is an isomorphism in dimension two.
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6 Even More Exercises

A Compute (at least mentally) the relative homology groupsHp(B
2, S1), where we

think of the circleS
1 as the boundary of the closed2-dimensional unit ballB2.

Generalize your answer to arbitrary dimension:

B Consider the annulusX as drawn in Figure 2 and recall thatX0 is the union of
the inner and the outer circles. Recall that we have already computedHp(X, X0)
in every dimension.

• Compute the absolute homology groupsHp(X0) andHp(X):

• Let i denote the inclusion ofX0 into X andj denote the inclusion of pairs
(X, ∅) → (X, X0). Prove thatim i∗ = ker j∗:
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