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1 Overview

Last time we discussefdinctoriality: how continuous maps between spaces (or pairs
of spaces) help transfer homological (or relative homaalyiinformation. Today we
will see that these maps allow us to see connections between:

e the relative homology of a pair of spac€$, A) and the absolute homology of
the two spaceX andA.

e the homology of a decomposed spate- X’ U X" in terms of the homology of
the spaceX’, X"/, andX’ N X”.

The second idea in particular is very important, for it wilbav us to understand the
homology of complicated spaces via a glueing-togetherrapkér spaces. For both
ideas, the key concept is that all of the relevant homologys fit together into a
long exact sequence; we begin with an abstract descripfitimalgebraic concept,
before moving on to more concrete examples.

2 Algebraic Terminology

Let’s briefly review some terminology about maps betweenorespaces before we get
to the new idea. Given a homomorphigm V — W, recall that we defined theernel
of ftobeker f = {v e V| f(v) =0}, and theimage of f to beim f = {f(v) | v €
V}. We also define theokernel of f to be the quotientok f = W/im f. Note two
convenient factsV = ker f & im f andW = im f & cok f.

Now suppose we have a sequence of three vector spaces @ahhgehaps:

v—_ow—25u

This sequence is said to legact at W if im f = ker g; that is, if an element iWV is
mapped to zero by iff it is the image of an element undgt

To relate exactness to earlier ideas, consider the folipwhvious facts:

e Amapf :V — W isinjective iff the sequence

OEVLW

is exact alv.



Figure 1:X is the annulus, and the union of the inner and the outer circles

e Amapg: W — U is surjective iff the sequence
W—5U——0

is exact all.
A short exact sequenceis a sequence of five vector spaces, bracketed by zero, wich i
exact at all three internal nodes:

0——v-—sw-—25uy 0

Finally, along exact sequence is a doubly infinite sequence of vector spaces which is
exact at every node.

3 Long Exact Sequence of a Pair

Suppose we have a pair of spa¢EsA). We will now see that the absolute homology

of the two individual spaceX andA fits into a long exact sequence with the relative
homology of the paifX, A). Before giving the general theorem, let us work through a
familiar example.

3.1 Annulusexample.

Consider again the annuld&in Figure 1, wheréA is the union of the inner and the
outer circles. Let : A — X be the inclusion map which considetsas a subspace of
X, and letj : X — (X, A) be the map of pairs. We claim that i, = ker j. in each
dimension. Let’s investigate this in the two relevant digiens.

Dimension one. The spacé\ is the disjoint union of two circles, so clearty; (A)
is rank two; let's choose as a basis the homology clas$eand|[B], where A and B
are 1-cycles made up of the inner and outer circles, respectiv@ly the other hand,



the groupH; (X) is rank one (since the annulus is homotopically equivalertsingle
circle!); as generator, we take the homology cl@ss whereC' is somel-cycle going
around the hole in the annulus.

Note thatA and B are both homologous t6" within X; in other words,[C] =
i+([4]) = i.(|B]), and so in this casen i.. = H;(X). On the other hand, we also have
J«([C]) = 0 since the homology betweer and A (a chain fully within the spaca.!)
means thafC] becomes trivial once we mod out by the sp@celn other words, we
have shown that the sequence

Hi(A) —— Hi(X) —Z— Hi(X, A)

is exact at the middle node. Notice also thats not injective; indeedker i, is rank
one, generated byl] + [B], a fact we will come back to later.

Dimension zero. SinceA has two connected components, the grélgA) is rank
two, and let’s take as generators the clagsand[w] wherev is some vertex on the
inner circle andw is some vertex on the outer circle. The annulus is connectdd a
henceH, (X) is rank one, with generatdx]. Note that[x] = i.([v]) = i.([w]), and
hence[z] € im .. On the other hand.([x]) = 0, sinceH (X, A) is the zero group.
As above, we have shown that the sequence

Ho(A) —— Ho(X) —Z Ho(X, A)
is exact at the middle.node

Connecting homomorphisms We now stitch the last two sequences together via a
connecting homomor phism, as we now describe. Recall from last week that the relative
homology groupH; (X, A) is rank one, with generatd#], whereE is a one-chain
which connects some point on the inner circle to some poirtherouter circle. We
define a homomorphisi, : Hy (X, A) — Ho(A) by settingd, ([E]) = [0F] € Ho(A);
in other words, we mapF] to the homology class represented by its bounda#y.in

Of course, we could also writ@, ([E]) = [v] + [w], since any vertex on the inner
circle (outer circle) is homologous to(w). On the other hand, we see from the above
thati, ([v] + [w]) = 0, and hencém 0. = ker i,.. That is, we have extended the above
exact sequence into this one:

Hi(A) — 5 Hi(X) —2 s i A) —2 Ho(A) — 5 Ho(X) —2 Ho(X, A)

Really, we also have to show exactness at the third node. hiButsteasy. Note that
ker 9, = 0, since the group; (X, A) is rank one, and the generator does not map to
zero. On the other hand, the imagetbf(X) underj., is also zero, since the generator
of the rank one absolute homology group does map to zerogheng. = 0 = ker 9.
Following a similar procedure, we can extend the sequentéuytber. Consider
the relative homology groupls(X, A), which is rank-one, and take as generator the
homology classI'], whereI is a 2-chain making up the entire annulus. Exactly as



above, we define a connecting homomorphiam Hy (X, A) — Hy(A) by 0. ([T]) =
[0T'] = [A] + [B] and we see immediately that 0, = keri.. Thus, we can extend
the sequence yet further (now we show only the leftmost part)

Ha(A) — " Ha(X) —2 5 Ho(X,A) —2 5 Hi(A) —" 5 HI(X) —2 Hy (X, A)

Note that exactness at the second node in this sequenceias, tsince the first two
groups in this sequence are zero, while exactness at ttertbde follows fromo.
being injective in this dimension. Since all absolute anchblmgy groups above di-
mension two (and in negative dimension) are zero for thisrgla, we have in fact
produced an entire long exact sequence, which we call trgedgact sequence of the
pair (X, A)

3.2 General Theory and an Application

There was nothing special hidden in the previous exampleerGany pair of spaces
(X, A), we can define for each integea connecting homomorphisth : H,(X) —
H,—1(A) in similar fashion to above. Suppose we have a homology alassl, (X, A)
with relativep-cycle representativd. SinceA is a relativep-cycle, there are only two
possibilities: eitherd has a completely empty boundary, or the boundaryldfes
entirely withinA. In either case, we defirig («) € H,_1(A) to be the homology class
of the (p — 1)-cycle 9A. Notice thatd, («) = 0 iff A is also anabsolute p-cycle, in
which casex is of course in the image gf; that is,ker 9, = im j,.

Moving through all the dimensions we can stitch the connecting homomorphisms
together with the map& andj. to form thelong exact sequence of the pair (X, A):

C O U HG(A) — s H(X) — T H (X A) — 2 Hy g (A) —

This sequence is often very computationally useful. Inipalar, if we know every
two out of three of the groups in the sequence, then exacpeeasts us to figure out
the other ones. For example:

CLAIM: For all d > 1, the relative homology groupl, (B¢, S¢1) is rank one
whenp = d and is zero whep # d:

proof:



4 The SnakeLemma

Let us set topology aside for a second and take a brief tripamhore purely algebraic
world. We will show that the process above abstracts intoxaremely useful one:
namely, whenever we have a short exact sequence of chairlexaapwe can produce
a long exact sequence of homology groups. The topologicaifpaill come in the
next section, where we learn that we can understand the logyaoif a large space
from the homology of smaller spaces which glue togethertmfit, as long as we also
understand the glueing itself. First some definitions.

Chain complexesand chain maps. A chain complex is a sequence of vector spaces
U,, one for each integer, along with a sequence of homomorphisms U, — U,_;
which satisfy the “square-zero” property;, o u,+1 = 0. We usually think of/ =
(Up,up) as the chain complex and we call the magsboundary maps. Exactly as
before, we can define cycle grougg(i{) = keru, and boundary groupB, (i) =
imu,4+1. The square-zero property implies thgj(i/) C Z,(U), and thus we can
defineH, () = Z,(U)/B,(U), calling this thep-th homology group of the chain
complex!{.

Now letV = (V,,, v,) be another chain complex. éain map ¢/ — V betweerl/
andV is a sequence of homomorphisms: U, — V,,, one for each integer, which
must commute with the boundary maps: in other words, we ma the equation
vp 0 ¢, = ¢p_1 0 u, for everyp (Note that we've already seen an example of this: the
mapsfy : C,(K) — C,(L) induced by a simplicial map make up a chain map between
simplicial chain complexes.). Since the chain map commwittsthe boundary map,
we know that cycles go to cycles and boundaries go to boweslai,(Z, (1)) C
(Z,(V) andg,(B,(U)) € B,(V). Hence the chain map induces a map on homology
groups in every dimension, which we denétg).. : H, (/) — H, (V).

Let W = (W,, w,) be a third chain complex and suppose we have another chain
map) — ¥V made up of the homomorphismis : V,, — W. We say that the sequence
U—V — Wisexact atV if ker, = im ¢, for everyp. A short exact sequence of
chain complexesis an exact sequence like the one below:

0 u—"05y Y w 0

Notice that this is really a compact way to represent a great af algebraic informa-
tion. In truth, a short exact sequence of chain complexegiglavith five columns and
infinitely many rows (or you can transpose the thing if yoe!)k Each column stores
a chain complex written vertically, with boundary maps gpirom top to bottom, and
each row stores an exact sequence of vector spaces for a firedsionp. The fact
that we have chain maps means that every single square ieti@ich commutes:



For example, consider a pair of subcomplex&§ K;). Then the inclusions of
Ky into K and K into (K, K) induce the following short exact sequence of chain
complexes:

0 — C(Ky) —— C(K) —— C(K,Ky) —— 0

Recall above that we were able to construct a connecting hmghismo,. : H, (K, Ky) —
H,—1(Kjy) that then produced a long exact sequence of homology grotigs.idea
generalizes, as we now discuss.

Connecting homomor phisms and the snake lemma. Assume that we have some
short exact sequence of chain complexes as in Diagram 4. Nd{pags to homology”
and see what happens. Since we have chain mapxl«), they induce for every a
sequence of homology maps

(6p)x

H, () (%)~

Hp(V) —— H,(W)

For eachp, we can stitch together theth such sequence to tlig — 1)-th sequence
via a connecting homomorphism,, : H,(W) — H,_1 (i), whose definition we now
briefly describe:

SNAKE LEMMA: Given the short exact sequence of chain comgeix Diagram
4, passing to homology along with the induced maps and thaemimg homomor-
phisms produces a long exact sequence of homology groups:

(6p)

Hy ) —22 S

Oy oy 2 )

Dpi1 (¢p)=
—

Hp(V)



5 Mayer-Vietoris Exact Sequence

We now exploit the Snake Lemma to describe the homology ofsppazes in terms of
the homology of their union and the homology of their intet&m. To avoid theoret-
ical complication, we discuss this only on the simplicialde but it can also be done
for arbitrary topological spaces and singular homology.

Decomposition. Suppose we have a simplicial compl&x along with two subcom-
plexesK’, K” such that’ U K" = K. Of course, their intersectioh = K’ N K" is
also a subcomplex. We consider three chain complexes, fhiessimplicial chain com-
plexesC(L) = (Cp(L),8%) andC(K) = (C,(K),dk); note that the boundary map
on L is of course just the restriction tb of the boundary map oi. We also form
the direct sum chain compleX(K’) & C(K") = (C,(K') & C,(K"),0k" & oK),
where the boundary map is defined component-wise. Note hisatst just the chain
complex of thedigoint union of K/ and K, where we just mentally ignore the fact
that they might have non-empty intersection, and that thadiogy of the direct sum
chain complex is the direct sum of the respective homologygs.

Exact sequence. These three chain complexes fit into a short exact sequenee a
now describe. First, we lét and:” denote the inclusions @f(L) into, respectively,
C(K') andC(K"), and we letj’ andj” denote the inclusions @f(K’) andC(K"),
respectively, inta (K). Finally, it is easy to see that the sequence of chain coraplex

J

00— C(L) —— C(K") & C(K") C(K) 0
wherei =i’ @i andj = j' + j”, is exact. Appealing to the Snake Lemma, we obtain
the following essential result:

MAYER-VIETORIS SEQUENCE THEOREM: LeK be a simplicial complex de-
composed into subcomplexés= K’ U K” and set. = K’ N K". Then there exists
a long exact sequence of simplicial homology groups:

D J s

D L HL(D) S H (K @ Hy(K”) 25 Hy(K) —2— Hyy (D) —— -



Figure 2: The toru¥X is decomposed int&’, which lies above the black line, anfl’, which
lies below.

Example To understand the Mayer-Vietoris sequence, in particlilarnhysterious
connecting homomorphism, let us decompose the now-faniilias as shown in Fig-
ure 2. We lefX be the torus, and write it 8 = X’ U X", whereX’ (X") is the half of
the torus which lies either on or above (on or below) the thieick line. We note that
X’ andX" are both homeomorphic to cylinders, whife= X’ N X" is homeomorphic
to a disjoint pair of circles:



