
Exact Sequences

25 Nov, 2010

1 Overview

Last time we discussedfunctoriality: how continuous maps between spaces (or pairs
of spaces) help transfer homological (or relative homological) information. Today we
will see that these maps allow us to see connections between:

• the relative homology of a pair of spaces(X,A) and the absolute homology of
the two spacesX andA.

• the homology of a decomposed spaceX = X
′ ∪X

′′ in terms of the homology of
the spacesX′, X

′′, andX
′ ∩ X

′′.

The second idea in particular is very important, for it will allow us to understand the
homology of complicated spaces via a glueing-together of simpler spaces. For both
ideas, the key concept is that all of the relevant homology groups fit together into a
long exact sequence; we begin with an abstract description of this algebraic concept,
before moving on to more concrete examples.

2 Algebraic Terminology

Let’s briefly review some terminology about maps between vector spaces before we get
to the new idea. Given a homomorphismf : V → W, recall that we defined thekernel
of f to beker f = {v ∈ V | f(v) = 0}, and theimage of f to beim f = {f(v) | v ∈
V}. We also define thecokernel of f to be the quotientcok f = W/im f . Note two
convenient facts:V ∼= ker f ⊕ im f andW ∼= im f ⊕ cok f .

Now suppose we have a sequence of three vector spaces connected by maps:

V W U//

f
//

g

This sequence is said to beexact at W if im f = ker g; that is, if an element inW is
mapped to zero byg iff it is the image of an element underf .

To relate exactness to earlier ideas, consider the following obvious facts:

• A mapf : V → W is injective iff the sequence

0 V W// //

f

is exact atV.
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Figure 1:X is the annulus, andA the union of the inner and the outer circles

• A mapg : W → U is surjective iff the sequence

W U 0//

g
//

is exact atU.

A short exact sequence is a sequence of five vector spaces, bracketed by zero, which is
exact at all three internal nodes:

0 V W U 0// //

f
//

g
//

Finally, a long exact sequence is a doubly infinite sequence of vector spaces which is
exact at every node.

3 Long Exact Sequence of a Pair

Suppose we have a pair of spaces(X,A). We will now see that the absolute homology
of the two individual spacesX andA fits into a long exact sequence with the relative
homology of the pair(X,A). Before giving the general theorem, let us work through a
familiar example.

3.1 Annulus example.

Consider again the annulusX in Figure 1, whereA is the union of the inner and the
outer circles. Leti : A → X be the inclusion map which considersA as a subspace of
X, and letj : X → (X,A) be the map of pairs. We claim thatim i∗ = ker j∗ in each
dimension. Let’s investigate this in the two relevant dimensions.

Dimension one. The spaceA is the disjoint union of two circles, so clearlyH1(A)
is rank two; let’s choose as a basis the homology classes[A] and[B], whereA andB
are1-cycles made up of the inner and outer circles, respectively. On the other hand,
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the groupH1(X) is rank one (since the annulus is homotopically equivalent to a single
circle!); as generator, we take the homology class[C], whereC is some1-cycle going
around the hole in the annulus.

Note thatA andB are both homologous toC within X; in other words,[C] =
i∗([A]) = i∗([B]), and so in this caseim i∗ = H1(X). On the other hand, we also have
j∗([C]) = 0 since the homology betweenC andA (a chain fully within the spaceA!)
means that[C] becomes trivial once we mod out by the spaceA. In other words, we
have shown that the sequence

H1(A) H1(X) H1(X,A)//

i∗
//

j∗

is exact at the middle node. Notice also thati∗ is not injective; indeed,ker i∗ is rank
one, generated by[A] + [B], a fact we will come back to later.

Dimension zero. SinceA has two connected components, the groupH0(A) is rank
two, and let’s take as generators the classes[v] and[w] wherev is some vertex on the
inner circle andw is some vertex on the outer circle. The annulus is connected and
henceH0(X) is rank one, with generator[x]. Note that[x] = i∗([v]) = i∗([w]), and
hence[x] ∈ im i∗. On the other hand,j∗([x]) = 0, sinceH0(X,A) is the zero group.
As above, we have shown that the sequence

H0(A) H0(X) H0(X,A)//

i∗
//

j∗

is exact at the middle.node

Connecting homomorphisms We now stitch the last two sequences together via a
connecting homomorphism, as we now describe. Recall from last week that the relative
homology groupH1(X,A) is rank one, with generator[E], whereE is a one-chain
which connects some point on the inner circle to some point onthe outer circle. We
define a homomorphism∂∗ : H1(X,A) → H0(A) by setting∂∗([E]) = [∂E] ∈ H0(A);
in other words, we map[E] to the homology class represented by its boundary inA.

Of course, we could also write∂∗([E]) = [v] + [w], since any vertex on the inner
circle (outer circle) is homologous tov (w). On the other hand, we see from the above
thati∗([v] + [w]) = 0, and henceim ∂∗ = ker i∗. That is, we have extended the above
exact sequence into this one:

H1(A) H1(X) H1(X,A) H0(A) H0(X) H0(X,A)//

i∗
//

j∗
//

∂∗
//

i∗
//

j∗

Really, we also have to show exactness at the third node. But this is easy. Note that
ker ∂∗ = 0, since the groupH1(X,A) is rank one, and the generator does not map to
zero. On the other hand, the image ofH1(X) underj∗ is also zero, since the generator
of the rank one absolute homology group does map to zero; hence im j∗ = 0 = ker ∂∗.

Following a similar procedure, we can extend the sequence yet further. Consider
the relative homology groupH2(X,A), which is rank-one, and take as generator the
homology class[Γ], whereΓ is a 2-chain making up the entire annulus. Exactly as
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above, we define a connecting homomorphism∂∗ : H2(X,A) → H1(A) by ∂∗([Γ]) =
[∂Γ] = [A] + [B] and we see immediately thatim ∂∗ = ker i∗. Thus, we can extend
the sequence yet further (now we show only the leftmost part):

H2(A) H2(X) H2(X,A) H1(A) H1(X) H1(X,A)//

i∗
//

j∗
//

∂∗
//

i∗
//

j∗

Note that exactness at the second node in this sequence is trivial, since the first two
groups in this sequence are zero, while exactness at the third node follows from∂∗
being injective in this dimension. Since all absolute and homology groups above di-
mension two (and in negative dimension) are zero for this example, we have in fact
produced an entire long exact sequence, which we call the long exact sequence of the
pair (X,A)

3.2 General Theory and an Application

There was nothing special hidden in the previous example. Given any pair of spaces
(X,A), we can define for each integerp a connecting homomorphism∂∗ : Hp(X) →
Hp−1(A) in similar fashion to above. Suppose we have a homology classα in Hp(X,A)
with relativep-cycle representativeA. SinceA is a relativep-cycle, there are only two
possibilities: eitherA has a completely empty boundary, or the boundary ofA lies
entirely withinA. In either case, we define∂∗(α) ∈ Hp−1(A) to be the homology class
of the (p − 1)-cycle∂A. Notice that∂∗(α) = 0 iff A is also anabsolute p-cycle, in
which caseα is of course in the image ofj∗; that is,ker ∂∗ = im j∗.

Moving through all the dimensionsp, we can stitch the connecting homomorphisms
together with the mapsi∗ andj∗ to form thelong exact sequence of the pair (X,A):

. . . Hp(A) Hp(X) Hp(X,A) Hp−1(A) . . .//

∂∗
//

i∗
//

j∗
//

∂∗
//

i∗

This sequence is often very computationally useful. In particular, if we know every
two out of three of the groups in the sequence, then exactnesspermits us to figure out
the other ones. For example:

CLAIM: For all d ≥ 1, the relative homology groupHp(Bd,Sd−1) is rank one
whenp = d and is zero whenp 6= d:

proof:
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4 The Snake Lemma

Let us set topology aside for a second and take a brief trip into a more purely algebraic
world. We will show that the process above abstracts into an extremely useful one:
namely, whenever we have a short exact sequence of chain complexes, we can produce
a long exact sequence of homology groups. The topological payoff will come in the
next section, where we learn that we can understand the homology of a large space
from the homology of smaller spaces which glue together to form it, as long as we also
understand the glueing itself. First some definitions.

Chain complexes and chain maps. A chain complex is a sequence of vector spaces
Up, one for each integerp, along with a sequence of homomorphismsup : Up → Up−1

which satisfy the “square-zero” property:up ◦ up+1 = 0. We usually think ofU =
(Up, up) as the chain complex and we call the mapsup boundary maps. Exactly as
before, we can define cycle groupsZp(U) = kerup and boundary groupsBp(U) =
imup+1. The square-zero property implies thatBp(U) ⊆ Zp(U), and thus we can
defineHp(U) = Zp(U)/Bp(U), calling this thep-th homology group of the chain
complexU .

Now letV = (Vp, vp) be another chain complex. Achain map U → V betweenU
andV is a sequence of homomorphismsφp : Up → Vp, one for each integerp, which
must commute with the boundary maps: in other words, we must have the equation
vp ◦ φp = φp−1 ◦ up for everyp (Note that we’ve already seen an example of this: the
mapsf# : Cp(K) → Cp(L) induced by a simplicial map make up a chain map between
simplicial chain complexes.). Since the chain map commuteswith the boundary map,
we know that cycles go to cycles and boundaries go to boundaries: φp(Zp(U)) ⊆
(Zp(V) andφp(Bp(U)) ⊆ Bp(V). Hence the chain map induces a map on homology
groups in every dimension, which we denote(φp)∗ : Hp(U) → Hp(V).

Let W = (Wp, wp) be a third chain complex and suppose we have another chain
mapV → W made up of the homomorphismsψp : Vp → W. We say that the sequence
U → V → W is exact atV if kerψp = imφp for everyp. A short exact sequence of
chain complexes is an exact sequence like the one below:

0 U V W 0// //

φ
//

ψ
//

Notice that this is really a compact way to represent a great deal of algebraic informa-
tion. In truth, a short exact sequence of chain complexes is agrid with five columns and
infinitely many rows (or you can transpose the thing if you like!). Each column stores
a chain complex written vertically, with boundary maps going from top to bottom, and
each row stores an exact sequence of vector spaces for a fixed dimensionp. The fact
that we have chain maps means that every single square in the diagram commutes:
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For example, consider a pair of subcomplexes(K,K0). Then the inclusions of
K0 into K andK into (K,K0) induce the following short exact sequence of chain
complexes:

0 C(K0) C(K) C(K,K0) 0// // // //

Recall above that we were able to construct a connecting homomorphism∂∗ : Hp(K,K0) →
Hp−1(K0) that then produced a long exact sequence of homology groups.This idea
generalizes, as we now discuss.

Connecting homomorphisms and the snake lemma. Assume that we have some
short exact sequence of chain complexes as in Diagram 4. Now we “pass to homology”
and see what happens. Since we have chain mapsφ andψ, they induce for everyp a
sequence of homology maps

Hp(U) Hp(V) Hp(W)//

(φp)∗
//

(ψp)∗

For eachp, we can stitch together thep-th such sequence to the(p − 1)-th sequence
via a connecting homomorphismDp : Hp(W) → Hp−1(U), whose definition we now
briefly describe:

SNAKE LEMMA: Given the short exact sequence of chain complexes in Diagram
4, passing to homology along with the induced maps and the connecting homomor-
phisms produces a long exact sequence of homology groups:

. . . Hp(U) Hp(V) Hp(W) Hp−1(U) . . .//

Dp+1
//

(φp)∗
//

(ψp)∗
//

Dp
//

(φp)∗
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5 Mayer-Vietoris Exact Sequence

We now exploit the Snake Lemma to describe the homology of twospaces in terms of
the homology of their union and the homology of their intersection. To avoid theoret-
ical complication, we discuss this only on the simplicial level, but it can also be done
for arbitrary topological spaces and singular homology.

Decomposition. Suppose we have a simplicial complexK, along with two subcom-
plexesK ′,K” such thatK ′ ∪K ′′ = K. Of course, their intersectionL = K ′ ∩K ′′ is
also a subcomplex. We consider three chain complexes. First, the simplicial chain com-
plexesC(L) = (Cp(L), ∂Lp ) andC(K) = (Cp(K), ∂Kp ); note that the boundary map
on L is of course just the restriction toL of the boundary map onK. We also form
the direct sum chain complexC(K ′) ⊕ C(K ′′) = (Cp(K

′) ⊕ Cp(K
′′), ∂K

′

p ⊕ ∂K
′′

p ),
where the boundary map is defined component-wise. Note that this is just the chain
complex of thedisjoint union ofK ′ andK ′′, where we just mentally ignore the fact
that they might have non-empty intersection, and that the homology of the direct sum
chain complex is the direct sum of the respective homology groups.

Exact sequence. These three chain complexes fit into a short exact sequence, as we
now describe. First, we leti′ andi′′ denote the inclusions ofC(L) into, respectively,
C(K ′) andC(K ′′), and we letj′ andj′′ denote the inclusions ofC(K ′) andC(K ′′),
respectively, intoC(K). Finally, it is easy to see that the sequence of chain complexes

0 C(L) C(K ′) ⊕ C(K ′′) C(K) 0// //
i

//

j
//

wherei = i′⊕ i′′ andj = j′ + j′′, is exact. Appealing to the Snake Lemma, we obtain
the following essential result:

MAYER-VIETORIS SEQUENCE THEOREM: LetK be a simplicial complex de-
composed into subcomplexesK = K ′ ∪K ′′ and setL = K ′ ∩K ′′. Then there exists
a long exact sequence of simplicial homology groups:

. . . Hp(L) Hp(K
′) ⊕ Hp(K

′′) Hp(K) Hp−1(L) . . .//
D

//

i∗
//

j∗
//

D
//

i∗
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Figure 2: The torusX is decomposed intoX′, which lies above the black line, andX′′, which
lies below.

Example To understand the Mayer-Vietoris sequence, in particular the mysterious
connecting homomorphism, let us decompose the now-familiar torus as shown in Fig-
ure 2. We letX be the torus, and write it asX = X

′ ∪ X
′′, whereX

′ (X′′) is the half of
the torus which lies either on or above (on or below) the thickblack line. We note that
X

′ andX
′′ are both homeomorphic to cylinders, whileY = X

′ ∩ X
′′ is homeomorphic

to a disjoint pair of circles:
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