
Simplicial Complexes: Second Lecture

4 Nov, 2010

1 Overview

Today we have two main goals:

• Prove that every continuous map between triangulable spaces can be approxi-
mated by a simplicial map. To do this, we will introduce the idea of barycentric
subdivision.

• Discuss various ways to triangulate a point cloud.

2 Simplicial Approximations

Suppose thatK andL are simplicial complexes. Recall that avertex map between
these complexes is a functionφ : V ert(K) → V ert(L) such that the vertices of a
simplex inK map to the vertices of a simplex inL. Given such aφ, we can create a
simplicial map f : |K| → |L| by linearly extendingφ over each simplex.

On the other hand, suppose we have an arbitrary continuous map g : |K| → |L|.
There is no reason to assume thatg would be simplicial. On the other hand, we can
hope to approximateg by a functionf which is itself simplicial and is not “too far
away” from f in some sense. That’s the goal today, and we start by defining it rig-
orously. A simplicial mapf : |K| → |L| is a simplicial approximation of g if, for
every vertexu ∈ K, g(StK(u)) ⊆ StL(f(u)); in other words, ifg maps points “near”
v to points “near”f(v), where points are considered “near” if they live in a common
simplex. If the simplices inK are reasonably small, it seems likely that we can do this.
Our goal now is to make this happen by repeatedly subdividingK.

2.1 Barycentric Subdivision

Another simplicial complexK ′ is asubdivision of K if |K ′| = |K| and every simplex
in K is the union of simplices inK ′.

One way to subdivideK is to “star” from an arbitrary pointx ∈ |K|, a procedure
which we now describe:
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• Find the simplexσ ∈ K such thatx ∈ int(σ).

• Remove the star ofσ.

• Cone the pointx over the boundary of the closed star ofσ.

We obtainsd(K), thebarycentric subdivision of K by starring from the barycenter of
each simplex inK, starting from the top-dimensional simplices and ending with the
edges.

We can of course repeat this as many times as we like. Letsdj(K) = sd(sdj−1(K))
denote thejth barycentric subdivision ofK. Intuitively, repeated subdivision should
make the resulting simplices very small. We define themesh of a simplicial complex
to be the largest diameter of any simplex; in this case, this is of course just the length
of the longest edge.

MESH LEMMA: Let K be ad-dimensional simplicial complex. ThenMesh(sd(K)) ≤
d

d+1Mesh(K).
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2.2 The Simplicial Approximation Theorem

We again letg : |K| → |L| be a continuous but not necessarily simplicial map. We say
thatg satisfies thestar condition if, for every vertexu ∈ K, there exists some vertex
v ∈ L such thatg(StK(u)) ⊆ StL(v).

If g satisfies the star condition, then it has a simplicial approximation, as we now
show. First we construct a mapφ : V ert(K) → V ert(L) by mapping each vertex
u ∈ K to some vertexv = φ(u) ∈ L which satisfies the condition above (if there’s
more than one, we pick one). We claim thatφ is in fact a vertex map. To see this, let
u0, u1, . . . , uk be the vertices of a simplexσ ∈ K and choose some pointx ∈ int(σ).
Thenx ∈

⋂
i st(ui) and henceg(x) ∈

⋂
i g(stK(ui)) ⊆

⋂
i stL(φ(ui)). Hence the

stars ofφ(u0), . . . , φ(uk) have nonempty mutual intersection, and thus these vertices
span a simplex inL, as required. Lettingf be the induced simplicial map, we see
immediately thatf is a simplicial approximation ofg.

We are now ready to prove the big theorem for this lecture:

SIMPL. APPROX. THEOREM: LetK and L be simplicial complexes. Ifg :
|K| → |L| is a continuous function, then there is a sufficiently large integerj such
thatg has a simplicial approximationf : |sdj(K)| → |L|.

proof: We cover|K| by the open setsg−1(stL(v), over all verticesv ∈ L. Since
|K| is compact, there exists a small positive numberλ such that every set of diameter
less thanλ is contained entirely within one of these open sets (this is intuitively obvious
and is formally called the Lebesgue Number Lemma). Appealing to the Mesh Lemma,
we now choosej big enough that every simplex insdj(K) has diameter less thanλ2 ,
and consider the mapg : |sdj(K)| → |L|. We choose an arbitrary vertexu ∈ sdj(K)
and note that the setstsdj(K)(u) must have diameter less thanλ, and thus must lie
entirely within one of the open setsg−1(stL(v)). In other words,g satisfies the star
condition, and thus, by the construction above, has a simplicial approximation.

We close the lecture by noting an important fact: iff is a simplicial approximation
of a mapg, thenf must also be homotopic tog.
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3 In-Class Exercises

A Let K andL be the following two1-dimensional simplicial complexes geomet-
rically realized inR2. K has verticesa0 = (0, 0) anda1 = (1, 0), along with the
edge(a0, a1), while L has verticesb0 = (0, 0), b1 = (0, 0.5), andb2 = (0, 1),
along with the edges between(b0, b1) and(b1, b2). Defineg : |K| → |L| by the
formulag(x, 0) = (0, x2).

(a) Show thatg doesnot satisfy the star condition.

(b) Find a large enoughj such thatg : |sdj(K)| → |L| satisfies the star condi-
tion. Then find a simplicial approximation for this map.

B SupposeK,L,M are simplicial complexes. Suppose thatf1 : |K| → |L| is
a simplicial approximation ofg1 : |K| → |L|, and thatf2 : |L| → |M | is a
simplicial approximation ofg2 : |L| → |M |. Prove thatf2 ◦ f1 is a simplicial
approximation ofg2 ◦ g1.
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4 Point Cloud Triangulations and the Nerve Lemma

We now discuss a variety of ways to triangulate a collection of points. In fact, we
will construct, in several different ways, a nested family of simplicial complexes from
a given point cloud; later these families will be very important in the computation of
persistent homology.

4.1 The Nerve Lemma

LetF be a finite collection of sets. We define thenerve of F to be the abstract simplicial
complex given by all subcollections ofF whose member have non-empty common
intersection:

Nrv(F ) = {X ⊆ F | ∩X 6= ∅}.

Note that the nerve is indeed a simplicial complex since∩X 6= ∅ andY ⊆ X implies
∩Y 6= ∅. If we need to, we can geometrically realize the nerve in someEuclidean
space, but we often just reason about it abstractly.

The main use of the nerve is the following. Suppose we want to represent some
topological spaceX in a combinatorial fashion. We coverX by some collection of
setsF and then take the nerve. Hopefully this nerve will faithfully represent the orig-
inal space, and in certain situations this is guaranteed. Recall that a space is called
contractible if it is homotopically equivalent to a point.

NERVE LEMMA: Let F be a finite collection of closed sets such that every in-
tersection between its members is either empty or contractible. ThenNrv(F ) has the
same homotopy type as∪F .

Note that ifF consists of convex sets in Euclidean space, then the hypothesis of the
Nerve Lemma will be satisfied.
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4.2 Cech Complexes

One example of a nerve is the following. LetP be a finite set of points inRd (or indeed
any metric space). For each fixedr ≥ 0 and eachx ∈ S, we defineBx(r) to be the
closed ball of radiusr centered atx. We then define the Cech complex ofS andr to
be the nerve of the collection of setsBx(r), asx ranges overS. Put another way,

CechS(r) = {σ ⊆ S |
⋂

x∈σ

Bx(r) 6= ∅}.

We note three facts about Cech complexes before moving on:

• Since the setsBx(r) are all convex, the Nerve Lemma applies, and henceCechS(r)
has the same homotopy type as the union ofr-balls around the points inS. This
latter set can be thought of as a “thickening” byr of the point setS. It will play
an important role in later lectures, and we denote it bySr.

• Given two radiir < r′, we obviously have the inclusionCechS(r) ⊆ CechS(r′).
Hence, if we letr from 0 to ∞, we produce a nested family of simplicial com-
plexes, starting with a set ofn vertices and ending with an enormousn-simplex,
wheren = |S|.

• A set of verticesσ ⊆ S forms a simplex inCechS(r) iff the set can be en-
closed within a ball of radiusr (do you see why this is true?). Hence deciding
membership in the Cech complex is equivalent to solving a standard problem in
computational geometry. It’s also not very nice in high dimensions.

• The Cech complex is massive at larger, both in size and in dimension. As we
will see later, most of the information it provides is also redundant, in that we
can come up with a much smaller complex with the same homotopytype if we
are little smarter.
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4.3 Vietoris-Rips Complexes

As stated above, it is often a little nasty to compute the Cechcomplex. A much more
convenient object is the following. Given a point cloudS and a fixed numberr ≥ 0,
we define theVietoris-Rips complex ofS andr to be:

RipsS(r) = {σ ⊆ S | Bx(r) ∩ By(r) 6= ∅,∀x, y ∈ σ}.

In other words,RipsS(r) consists of all subsets ofS whose diameter is no greater
than 2r. From the definitions, it is trivial to see thatCechS(r) ⊆ RipsS(r). In
fact, the two subcomplexes share the same1-skeleton (vertices and edges) and the Rips
complex is the largest simplicial complex that can be formedfrom the1-skeleton of the
Cech. In other words, the Rips complex will in general be evenlarger than the Cech.
However, it’s also clearly easier to compute, since we need only measure pairwise
distance between points. Unfortunately, we have no guarantees that the Rips complex
will give us the homotopy type of any particular space. Of course, forr < r′, we again
have the inclusionRipsS(r) ⊆ RipsS(r′).

4.4 Delaunay Triangulation and Alpha-Shapes

The Cech and the Rips complex both suffer from a common problem: the number of
simplices becomes massive, especially for larger. We now give a construction which
drastically limits the number of simplices, as well as reducing the dimension to that of
the ambient space for points in general position.

Given a finite point setS ⊆ R
d, we define theVoronoi cell of a pointp ∈ S to be:

Vp = {x ∈ R
d | d(x, p) ≤ d(x, q),∀q ∈ S}.

We noteVp is a convex polyhedron; indeed, it is the intersection of thehalf-spaces of
points at least as close top as toq, taken over allq ∈ S. Furthermore, any two such
Voronoi cells are either disjoint or meet in a common portionof their boundary. The
collection of all Voronoi cells is called the Voronoi diagram of S; we note that it covers
the entire ambient spaceRd.
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We then define theDelaunay triangulation of S to be (isomorphic to) the nerve of
the collection of Voronoi cells; more precisely,

Del(S) = {σ ⊆ S |
⋂

p∈σ

Vp 6= ∅}.

We note that a set of verticesσ ⊆ S forms a simplex inDel(S) iff these vertices all
lie on a common(d − 1)-sphere inRd. Assuming general position, we do in fact get a
simplicial complex.

Alpha Complexes We again letS be a finite set of points inRd and fix some radius
r. As seen above, the complexCechS(r) has the same homotopy type as the union
of r-ballsSr, but requires far too many simplices for larger. We now define a much
smaller complex,AlphaS(r), which is geometrically realizable inRd, and gives the
correct homotopy type.

First, for eachp ∈ S, we intersect ther-ball aroundp with its Voronoi region, to
form Rp(r) = Bp(r) ∩ Vp. These sets are convex (why?) and their union still equals
Sr. We then define theAlpha complex of S andr to be the nerve of the collection of
these sets:

AlphaS(r) = {σ ⊆ S |
⋂

p∈σ

Rp(r) 6= ∅}.

By the Nerve Lemma,AlphaS(r) has the same homotopy type asSr. On the other
hand, it is certainly much smaller, both in cardinality and dimension, thanCechS(r);
for example,AlphaS(r) will always be a subcomplex ofDel(S), and thus can have di-
mension no larger than the ambient dimension. As usual, we have inclusionsAlphaS(r) ⊆
AlphaS(r′), for all r < r′, and we note thatAlphaS(∞) = Del(S).
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5 In-Class Exercises

A Given a point cloudS and a radiusr, prove thatCechS(r) ⊆ RipsS(2r).

B Let S be a set of three points in the plane which form an acute triangle (all angles
below π

2 ), and letT be a set of three points in the plane which form an obtuse
triangle (one angle aboveπ2 ).

(a) Draw the Voronoi diagrams and Delaunay triangulations of S andT .

(b) Draw the family of Alpha-complexesAlphaS(r) andAlphaT (r), for all
radii r (note that there’s only a finite number of radii at which thesecom-
plexes change!). Which family contains a member that is homeomorphic
to a circle?
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