Simplicial Complexes: Second Lecture

4 Nov, 2010

1 Overview

Today we have two main goals:

e Prove that every continuous map between triangulable speere be approxi-
mated by a simplicial map. To do this, we will introduce theadf barycentric
subdivision.

e Discuss various ways to triangulate a point cloud.

2 Simplicial Approximations

Suppose thak and L are simplicial complexes. Recall thatvartex map between
these complexes is a functian: Vert(K) — Vert(L) such that the vertices of a
simplex in K map to the vertices of a simplex i Given such ap, we can create a
smplicial map f : |K| — |L]| by linearly extending over each simplex.

On the other hand, suppose we have an arbitrary continuopgymax’| — |L|.
There is no reason to assume thawould be simplicial. On the other hand, we can
hope to approximatg by a functionf which is itself simplicial and is not “too far
away” from f in some sense. That's the goal today, and we start by defihirg-i
orously. A simplicial mapf : |K| — |L| is asimplicial approximation of g if, for
every vertex: € K, g(Stx(u)) C Str(f(u)); in other words, ify maps points “near”

v to points “near”f(v), where points are considered “near” if they live in a common
simplex. If the simplices i are reasonably small, it seems likely that we can do this.
Our goal now is to make this happen by repeatedly subdividing

2.1 Barycentric Subdivision

Another simplicial complexs” is asubdivision of K if |[K’| = | K| and every simplex
in K is the union of simplices i’.

One way to subdividés is to “star” from an arbitrary point: € |K|, a procedure
which we now describe:



e Find the simplexr € K such that: € int(o).
e Remove the star of.

e Cone the point: over the boundary of the closed staroof

We obtainsd(K), thebarycentric subdivision of K by starring from the barycenter of
each simplex ink, starting from the top-dimensional simplices and endinth\ihie
edges.

We can of course repeat this as many times as we likesd/¢f ) = sd(sd’~!(K))
denote thejth barycentric subdivision of. Intuitively, repeated subdivision should
make the resulting simplices very small. We definertiesh of a simplicial complex
to be the largest diameter of any simplex; in this case, thif course just the length
of the longest edge.

MESH LEMMA: Let K be ad-dimensional simplicial complex. TheWesh(sd(K)) <
d;ilMesh(K).



2.2 The Simplicial Approximation Theorem

We again ley : |K| — |L| be a continuous but not necessarily simplicial map. We say
that g satisfies thestar condition if, for every vertexu € K, there exists some vertex
v € L such thay(Stx (u)) C Str(v).

If ¢ satisfies the star condition, then it has a simplicial apipnation, as we now
show. First we construct a map: Vert(K) — Vert(L) by mapping each vertex
u € K to some vertew = ¢(u) € L which satisfies the condition above (if there’s
more than one, we pick one). We claim thais in fact a vertex map. To see this, let
ug, u1, . . ., up be the vertices of a simplex € K and choose some pointe int(o).
Thenz € (), st(u;) and hencegy(z) € (), g(stx(u;)) € ; str(¢(u;)). Hence the
stars ofé(ug), . . ., ¢(ur) have nonempty mutual intersection, and thus these vertices
span a simplex in., as required. Letting be the induced simplicial map, we see
immediately thatf is a simplicial approximation of.

We are now ready to prove the big theorem for this lecture:

SIMPL. APPROX. THEOREM: LetK and L be simplicial complexes. 1§ :
|K| — |L] is a continuous function, then there is a sufficiently langteger; such
thatg has a simplicial approximatiofi : |sd’ (K)| — |L|.

proof: We covell K| by the open setg~! (st (v), over all verticess € L. Since
| K| is compact, there exists a small positive numbasuch that every set of diameter
less than\ is contained entirely within one of these open sets (thistigtively obvious
and is formally called the Lebesgue Number Lemma). Appgdtirthe Mesh Lemma,
we now choosg big enough that every simplex i’ (K) has diameter less tha}m
and consider the map: |sd’ (K)| — |L|. We choose an arbitrary vertexc sd’(K)
and note that the set,q;x)(u) must have diameter less than and thus must lie
entirely within one of the open sets !(stz(v)). In other wordsg satisfies the star
condition, and thus, by the construction above, has a stimphpproximation.

We close the lecture by noting an important factf i a simplicial approximation
of a mapg, then f must also be homotopic tn
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In-Class Exercises

A Let K andL be the following twol-dimensional simplicial complexes geomet-

rically realized inR?. K has verticesy = (0,0) anda; = (1,0), along with the
edge(ao, a1), while L has verticed, = (0,0),b; = (0,0.5), andbs = (0, 1),
along with the edges betweéby, b ) and (b1, b). Defineg : |K| — |L| by the
formulag(z,0) = (0,2?).

(a) Show thay doesnot satisfy the star condition.

(b) Find alarge enoughsuch thay : |sd’ (K)| — |L| satisfies the star condi-
tion. Then find a simplicial approximation for this map.

SupposekK, L, M are simplicial complexes. Suppose that: |K| — |L]| is
a simplicial approximation of;, : |K| — |L|, and thatfs : |L| — |M]|is a
simplicial approximation ofy, : |L| — |M|. Prove thatfs o f is a simplicial
approximation ofys o g;.




4 Point Cloud Triangulations and the Nerve Lemma

We now discuss a variety of ways to triangulate a collectibpants. In fact, we
will construct, in several different ways, a nested famiysionplicial complexes from
a given point cloud; later these families will be very im@art in the computation of
persistent homology.

41 TheNerveLemma

Let F' be afinite collection of sets. We define thegve of £ to be the abstract simplicial
complex given by all subcollections df whose member have non-empty common
intersection:

Nro(F)={X C F|nX # @}.

Note that the nerve is indeed a simplicial complex sinéé # @ andY C X implies
NY # . If we need to, we can geometrically realize the nerve in s&mdidean
space, but we often just reason about it abstractly.

The main use of the nerve is the following. Suppose we wangpoesent some
topological spac&X in a combinatorial fashion. We cove¥ by some collection of
setsF’ and then take the nerve. Hopefully this nerve will faithjukepresent the orig-
inal space, and in certain situations this is guaranteed:alRthat a space is called
contractible if it is homotopically equivalent to a point.

NERVE LEMMA: Let F' be a finite collection of closed sets such that every in-
tersection between its members is either empty or conlactThenNruv(F') has the
same homotopy type asF'.

Note that if ' consists of convex sets in Euclidean space, then the hygistbiethe
Nerve Lemma will be satisfied.



4.2 Cech Complexes

One example of a nerve is the following. LRtbe a finite set of points iR? (or indeed
any metric space). For each fixed> 0 and eachc € S, we defineB,,(r) to be the
closed ball of radiug centered at. We then define the Cech complex.®fandr to
be the nerve of the collection of sefs (), asx ranges ovel. Put another way,

Cechs(r) ={o C S| () Ba(r) # 2}.

rEoT

We note three facts about Cech complexes before moving on:

e Sincethe setB, (r) are all convex, the Nerve Lemma applies, and h&hegis (r)
has the same homotopy type as the union-bélls around the points ifi. This
latter set can be thought of as a “thickening”bgf the point setS. It will play
an important role in later lectures, and we denote ithy

e Given two radiir < 7/, we obviously have the inclusiatiechs(r) C Cechg(r’).
Hence, if we let from 0 to oo, we produce a nested family of simplicial com-
plexes, starting with a set afvertices and ending with an enormausimplex,
wheren = |5].

e A set of verticess C S forms a simplex inCechg(r) iff the set can be en-
closed within a ball of radius (do you see why this is true?). Hence deciding
membership in the Cech complex is equivalent to solving radsted problem in
computational geometry. It's also not very nice in high disiens.

e The Cech complex is massive at langeboth in size and in dimension. As we
will see later, most of the information it provides is alsduwadant, in that we
can come up with a much smaller complex with the same homaigyyif we
are little smarter.



4.3 Vietoris-Rips Complexes

As stated above, it is often a little nasty to compute the @echplex. A much more
convenient object is the following. Given a point clodcand a fixed number > 0,
we define the/ietoris-Rips complex ofS andr to be:

Ripsg(r) ={o C S| By(r) N By(r) # @,Va,y € }.

In other words Ripss(r) consists of all subsets ¢f whose diameter is no greater
than 2r. From the definitions, it is trivial to see thétechs(r) C Ripss(r). In
fact, the two subcomplexes share the sdars&eleton (vertices and edges) and the Rips
complex is the largest simplicial complex that can be forifinech the1-skeleton of the
Cech. In other words, the Rips complex will in general be deeger than the Cech.
However, it's also clearly easier to compute, since we nedg measure pairwise
distance between points. Unfortunately, we have no gueearthat the Rips complex
will give us the homotopy type of any particular space. Ofrseyforr < r/, we again
have the inclusioRipss(r) C Ripss(r’).

4.4 Delaunay Triangulation and Alpha-Shapes

The Cech and the Rips complex both suffer from a common pmabtee number of
simplices becomes massive, especially for larg@é/e now give a construction which
drastically limits the number of simplices, as well as radg¢he dimension to that of
the ambient space for points in general position.

Given a finite point sef C R?, we define th&/oronoi cell of a pointp € S to be:

Vp={z ¢ R? | d(x,p) < d(z,q),Vq € S}.

We noteV/, is a convex polyhedron; indeed, it is the intersection oftthi-spaces of
points at least as close oas toq, taken over ally € S. Furthermore, any two such
Voronoi cells are either disjoint or meet in a common portdrtheir boundary. The
collection of all Voronoi cells is called the Voronoi diagnaf S; we note that it covers
the entire ambient spad®’.



We then define th®elaunay triangulation of S to be (isomorphic to) the nerve of
the collection of Voronoi cells; more precisely,

Del(S)={oc C S|V, # 2}

peEo

We note that a set of vertices C S forms a simplex inDel(.S) iff these vertices all
lie on a commor{d — 1)-sphere inR?. Assuming general position, we do in fact get a
simplicial complex.

Alpha Complexes We again letS be a finite set of points iR and fix some radius

r. As seen above, the complé&¥chs(r) has the same homotopy type as the union
of r-balls S,., but requires far too many simplices for largeWe now define a much
smaller complexAlphas(r), which is geometrically realizable iR¢, and gives the
correct homotopy type.

First, for eachp € S, we intersect the-ball aroundp with its Voronoi region, to
form R,(r) = B,(r) N'V,. These sets are convex (why?) and their union still equals
S,-. We then define th@lpha complex of S andr to be the nerve of the collection of
these sets:

Alphas(r) ={o C S| [ Ry(r) # @}

peEoc

By the Nerve Lemmadiphas(r) has the same homotopy typess On the other
hand, it is certainly much smaller, both in cardinality anmehension, tharCechg(r);
for example Alphag(r) will always be a subcomplex dbel(.S), and thus can have di-
mension no larger than the ambient dimension. As usual, weihalusionsdiphags(r) C
Alphag(r'), forallr < v/, and we note thatliphas(co) = Del(S).
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I n-Class Exercises

A Given a point clouds and a radiug, prove thaiCechg(r) C Ripsg(2r).

B Let S be a set of three points in the plane which form an acute tiég(ad) angles
below ), and letT" be a set of three points in the plane which form an obtuse
triangle (one angle abovg).

(a) Draw the Voronoi diagrams and Delaunay triangulatidnS and7'.

(b) Draw the family of Alpha-complexediphag(r) and Alphar(r), for all
radii » (note that there’s only a finite number of radii at which thesm-
plexes change!). Which family contains a member that is honoephic
to a circle?
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