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Computing Robustness and Persistence for Images

Paul Bendich, Herbert Edelsbrunner, and Michael Kerber

Abstract—We are interested in 3-dimensional images given as arrays of voxels with intensity values. Extending these values to a
continuous function, we study the robustness of homology classes in its level and interlevel sets, that is, the amount of perturbation
needed to destroy these classes. The structure of the homology classes and their robustness, over all level and interlevel sets, can be
visualized by a triangular diagram of dots obtained by computing the extended persistence of the function. We give a fast hierarchical
algorithm using the dual complexes of oct-tree approximations of the function. In addition, we show that for balanced oct-trees, the
dual complexes are geometrically realized in R3 and can thus be used to construct level and interlevel sets. We apply these tools to
study 3-dimensional images of plant root systems.

Index Terms—Voxel arrays, oct-trees, persistent homology, persistence diagrams, level sets, robustness, approximations, plant roots.
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1 INTRODUCTION

The last decade has witnessed the development of persistent homollgying topological information of dimension higher than 0 as well
from a mathematical idea to a full-blown methodology for capturings the robustness of all information under perturbations of the input
essential features of data in a robust manner; see eg. the recent ®@&ta. We believe the latter to be a generally useful tool for the analysis
book [10]. Datasets to which persistent homology has been succe¥slevel sets; possible applications are the selection or the simplifi-
fully applied include natural images [5], trademark images [6], senseation of level sets, which have been studied with more specialized
networks [8], protein structures [20], gene expression profilesj#] approachesin[1, 12]

b_r{;un structures [7]. These and other appllgatlons are facmtateq by Ef'Outline. Section 2 gives the necessary background. Section 3 ex-
ficient algorithms and software for computing persistence for filter

complexes. While efficient, the algorithms are not yet fast enough ains an algorithm for computing the persistence diagram of a func-

C ; . . o 8P defined via an oct-tree. Section 4 analyzes the resulting approx-
support _broad gppllcatlons to 3-dimensional image data consisting 0 tions of persistence and robustness. Section 5 applies the tools
millions if not billions of voxels. )

) Lo . . . to root system data and reports on the run-time characteristics of our
Our first contribution is a fast algorithm for computing persistencg,fnyare. Section 6 concludes the paper
for 3-dimensional images. It uses standard image processing tools, ' '
such as oct-trees [17, 18], and produces the persistence infornratios g ackcrouND

a series of progressively more accurate approximations. An imgortan

step here is the construction of a simplicial complex that serves as {fi-this section, we introduce background from topology, in particular
put to the persistence algorithm. We analyze under which conditio@Mology groups and persistence, as well as terminology on images
this complex is geometrically realized &2; if these conditions are a@nd their representation as oct-trees.

satisfied, we may use versions of the marching cube algorithm [15] tOmages and oct-trees. We think of animageas a real-valued
compute approximations of level sets. The output of our algorithm iggnction. Since we are primarily interested in the 3-dimensional case,
converging series of multi-sets of dots in the plane, referred fees \ve write f : R3 — R. In practical applications, we can know the value
sistence diagramsvhere each diagram gives an easy-to-read encodigg the function only at a finite number of points. We are interested
of the homology of all level sets and interlevel sets of an oct-tree ajprthe important special case in which this set containsthiateger
proximation of the image, as well as the robustness of this informatiggints in a cube. Avoxelis a cube with unit side-length centered
under perturbations of the input data. The theoretical underpinningsgfsuch an integer point. Since all we know about the function are
this representation of homologlcal robustness can be found in [3, 1% values at the13 integer poin’[s’ we may as well use the voxels to
The second contribution is the detailed analysis of the approximatiogsnstruct a first piecewise-constant approximation. Specifically, we
of the diagram and the robustness information obtained for piecewgsfine fyox : R3 — R by settingfyox(X) = f(i, j, k) if x lies inside the
constant and piecewise linear approximations of the image data. Thegge| centered at the integer poiintj, k), assuming some tie-breaking

results quantify the convergence of the information provided in a serigg.chanism. andvas(x) = 0 if x is not contained in any of thad
of refinements by the hierarchical algorithm. The third contribution i ’ vox() y

the application of the new tools to analyze root systems of agricultura
plants. EW
As mentioned above, the persistence diagram of a 3-dimensional 1 -
image is a compact representation of the families of level and inter- ‘ ‘
level sets. It can therefore be compared with other summary repre-
sentations of level sets, such as Reeb graphs [16, 19] and the contour
spectrum [2]. While both contain information not readily available
from the persistence diagrams, the diagrams go beyond them by dis- L
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Assumen = 2/, Theroot nodeof an oct-tree is the union of the®  boundary. Substituting relative for absolute cycles, we define when
voxels. It has either zero or eight children, and in the latter case edmbunds and when it is homologous to another relative cycle, as before.
child is the root node of an oct-tree for the corresponding smaller array i-dimensionalrelative homology classs a collection of homol-
of voxels. Thdevelof a node in this tree i3 = 0 for the root node and ogous relative-cycles. Finally, these classes form a vector space, as
A + 1 for the child of a node at levél. A node of the oct-tree iiter-  before, which we denote &k (X, Xp), and call the-th relative homol-
nal if it has eight children, as in Figure 1, and itesternalif it has no  ogy groupof the pair(X,Xp). Similar to before, we writdd (X, Xo)
children. Nodes at level are single voxels and cannot have childrenfor the direct sum of thél; (X, Xp).
The heightof the oct-tree is the maximum level of any of its nodes, We illustrate these definitions using the toiisthat bounds the
which is at mos?. Given an oct-treeB, we use its external nodes todonut-shaped space in the lower-right quadrant of Figure 2. Since
construct a functiorfg : R3 — RR. Specifically, we sefg(x) equal to X is connected, we have raftky(X)) = 1. There is one void formed
a consensus value of the voxels that make up the external node thathe torus itself, and hence rgitle(X)) = 1 as well. The group
containsx, assuming again some tie-breaking mechanism for poirits (X) is more interesting. Letr and 3 be two meridian 1-cycles,
that belong to two or more external nodes. We fggk) = O if x lies  both passing through the visible tunnel of the torus, angt et a lon-
outside all external nodes. We hafge= fyox if all external nodes are gitudinal 1-cycle, going around that tunnel. Note tisatnd 3 are
voxels. homologous since their sum forms the boundary of the tube between
) ) ) . them. On the other hang,is homologous to neither nor 3. With
Complexes. Here we explain the terminology relating to simpli-4 jittle work, we can see that any other non-bounding 1-cyclX im
cial complexes that we use in later sections. By-aimplex we mean homologous tax or to y or to their sum. In other words, the homol-
the_ convex h_uII of +1 affinely mdependent points. Foe 0, 1, 2,3, ogy classes represented yandy form a basis foH; (X), and hence
ani-simplex is avertex anedge atriangle, atetrahedron Given a rank(H1 (X)) = 2. Now suppose we use a plane to cut the torus into
simplexo, the set of simplices spanned by the subsets of the vertiggg, cylinders, letting one b&y. The pair(X,Xo) defines relative cy-
of o are calledfacesof 0. A simplicial complex Kin R3 is a set of jes of dimension 0, 1, and 2. We have réni(X, X)) = 0 because
intersect, if at all, along an entire mutual face. For example, one cg{izyrve whose boundary is that point plus some poign Further-
not have an edge piercing a triangle. Timederlying spaceK| of a  more, rankH1 (X, X)) = rankHo(X, Xo)) = 1, with the two vector
simplicial complexK is the union of all the simplices iK together gpaces spanned by the longitudinal 1-cycle and the torus surface.
with the topology inherited from the ambient Euclidean space. We have described homology here in the context of a topological
There is also a notion of ambstract sim_plicial complexThis is_a space. There is also a nearly equivalent notion of homology for a
set.#” of subsets of some vertex set that is closed under Contalnm%’]fhpﬁcim Comp|ex_ Using this latter idea, the vector spaces can be
in other words,o € % andt C o requirest € .#". For example, an computed by reducing a matrix whose columns are indexed by the
abstract simplicial complex can be obtained by takingrteese[10,  simplices in the complex; of course, the more simplices in the com-
page 59K of a collection of convex sets. Lettiri§ contain one ver- pjex, the longer the running time. Hence, the oct-tree construction de-
tex for each convex se will contain a simplexo for each collection  scribed in this paper will produce a faster running time via a controlled
of convex sets with a non-empty intersection. Given an abstract siffecrease in the number of input simplices. For details on simplicial
pI|C|aI complex%’, ageometric realizations a drawing of# as a h0m0|ogy and the matrix reduction a|gorithm, see [10]

simplicial complexK in some Euclidean space. Finallytr@angula- Persistence. One disadvantage of homology, as described above,

tion of a topological spac¥ is a simplicial compleXxX along witha . . Ay ) A
homeomorphism betweel| andX. In the rest of this section, we is its sensitivity to small changes in the space. For example, consider
. ' e twice-broken circl&” shown in the upper-left quadrant of Figure

will often blur the difference between a topological space and a sirg'- it

plicial complex by imagining that we have in mind a triangulation of; As itis currently drawn, there are two components and no other cy-

the former. _cles. On the other hand, a_small changé(!rperhaps cal_Jsed by some

inaccuracy in rendering, might cause radical homological chafges;

Homology. Here we give an informal description of the homol-€xample, the space in the lower-right quadrant of the same figure has

ogy basics needed for this paper; for a more thorough and genegly one component but also has a non-bounding 1-cycle. We now

treatment of homology theory, see for example [14]. We first d&ive a brief sketch of persi;tent homollogy, which deals with this prob-

scribe theZ/ZZ_homok)gy groupg-h(x) of a topological spac&, lem by turning homology into a multi-scale concept; as before, we

restricting ourselves to dimensions- 0,1,2. Each such group will refer the reader to [10] for more precision and detail.

be a vector space ové&/2Z. By a Ocyclein X we mean a point,

by a Lcyclewe mean a closed curve possibly with self-intersections, t=0 t=4

and by a 2cyclewe mean a closed surface. We can add anyitwo

cyclesa and 3 by defininga + 3 to be thei-cycle formed by the ""

closure of their symmetric difference. Arcycle a boundsif a is the

boundary of an(i + 1)-dimensional subspace &; intuitively a cy-

cle bounds if it can be pulled taut to a point entirely within the space

X. We also say thatr is homologougo anotheri-cycle 3 if there

exists an(i + 1)-dimensional subspace whose boundarg is 3. An

i-dimensionahomology classs a collection of mutually homologous

t=14 t=6
i-cycles. For example, a 0-dimensional class would be a connected
component, while we imagine a 1-dimensional class as a loop going
around a tunnel, and a 2-dimensional class as a surface enclosing a
void. The set ofi-dimensional classes forms the vector spHgEX)
with addition again corresponding to taking symmetric difference. The
rank of this vector space, denoted as @hkX)), is often referred to

as thei-th Betti numberof X. It will often be convenient to talk about

homology whole-sale, considering all dimensions at once. To do this

formally, we defineH(X) as the direct sum of thH;(X). We extend Fig. 2: Four sublevel sets of the functidn. As we move clockwise from the upper-left,
the above notion of absolute homology assuming a second topoldg-threshold parameter increases.

ical spaceXg C X. An i-dimensional subspace C X is called a

relative i-cycleof the pair(X, Xg) if the boundary ofx is entirely con- We start with a topological spadé and a continuous real-valued
tained withinXg; of course this includes the possibility thathas no function f : Ml — R. The main idea is to construct a sequence of vec-
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tor spaces with maps between them, calling thidfillration of M in-  sider the diamond, in which we notice two dots, one corresponding to
duced by the functiori. As a working example, we considif = S,  the component that was born at the beginning and dies right after the
the 3-sphere, which we picture &S compactified by adding a point end of the first phase and the other to the 3-cycle that was born right
at infinity, and we letf = dy, the function that maps each pointS&  before the end of the first phase. In general, the diamond contains one
to its distance from the spadé C M. In a first phase, we consider dot for each class that is born during the first phase and dies during the
sublevel setdl; = f~1(—o r], wherer € R. Whenever <s, there second phase of the filtration. Finally, the right triangle contains a dot
is an inclusion of setdl; C Ms. In our example, the sublevel sets ardor each class born and dying during the second phase. Notice that this
empty until we reaclr = 0, when we havéY itself. Asr increases diagram is symmetric, with points of dimensiobeing reflected into
further, the sublevel set gradually thicketisuntil finally the entire points of dimension 3-i across the vertical line which separates the
3-sphere is filled in. During this process, some homology classes diso halves of the diamond. This symmetry will be present whenever
appear and some new ones are formed. For example, in the pas$dge a compact manifold [10, Chapter VII].

from the upper-left quadrant of Figure 2 to the upper-right, two com-

8 . Stability. These diagrams are useful because thegtatgdeunder
ponents are merged into one, and so we say that one compdiasnt Y g ¥

small changes in the function, in a manner which we now describe,

while another component remains ?“VQ' Moving fo the sublevel setga; | example and then the general theory. Suppose that we slightly
the lower-right, a new 1-cycle isorn; this 1-cycle subsequently dies J /1 the values of our functioty to produce a new functiog;

moving into the lower-left, as there is now a surface for it to boun he diaaram is drawn in Figure 4. Notice that the diagrams of
At this moment, we have one 0-cycle alive and nothing else. Whene diagram ofy is dra gure 4. Notice that the diagrams o

we reach the point at infinity, the 3-cycle defined by the sphere itself
is formed.

During a second phase of the filtration, we consider p@ifsM"),
whereM" = f~1[r,») is asuperlevel seof f, and we letr decrease
from positive infinity to negative infinity. We may visualize this by
moving in a counterclockwise order in Figure 2, interpreting each
shape as the piece of the 3-sphere that remains if we remove the super-
level set. The first change in this second phase is the death of the re-
maining 0-dimensional class. Moving from the lower-left to the lower-
right quadrant, we see the birth of a 2-dimensional relative class, which
dies when we move into the upper-right quadrant. Going back to the
upper-left quadrant, we see the birth of a 3-dimensional relative,class
which dies together with the other such class when the two compo- Fig. 4: The persistence diagram for a perturbed version of the fundtion
nents are subsumed B§p. As a general rule, all births and deaths
happen at critical values df. Thepersistencef a class is defined to dy and ofg are virtually identical, except for the presence of a large
be the absolute difference between its birth and death values. number of dots along the birth=death diagonal in the latter; these extra
dots are all of very low persistence and hence are probably noise. This
example illustrates a general fact and motivates us to add infinitely

ny copies of the dots on the diagonal to the diagram. Given two
real-valued functiond, g on the topological spackl, we define the
Lo-distance between them to h€é — g||,, = supen | (X) — 9(x)|. We
also define a similar distance between dots in the plane=f(a,b)
andv = (c,d), then|lu—v|,, = max{|c—a|,|d —b|}. To compare the
diagrams Dgrtf ) and Dgnig), we consider a bijectioh : Dgm(f) —
Dgm(g), and find the largest distance between matched dots; we then
minimize this distance over all possible bijections. In symbols, we
define thebottleneck distancbetween the diagrams to be:

Diagrams. Given a functionf, the persistence diagram Dgfy),
consisting of two triangles and one diamond, records the birth a
death of homology classes during the filtration defined byVe ex-
plain this for the examplé = dy, whose diagram is drawn in Figure
3.

W (Dgm(f),Dgm(g)) = ipfsgp\IU— T (W loo

where " ranges over all bijections and ranges over all dots in
Dgm(f). As stated in [10, Chapter VIII], the diagram is stable un-
der measuring difference with the bottleneck distance:

We(Dgm(f),Dgm(g)) < |[[f —0lc- @
Fig. 3: The persistence diagram for the functébnillustrated through four of its sublevel . . .
sets in Figure 2. Each axis goes from minus to plus infinity, and we markigieswith Robustness. The persistence diagram Dg@f) contains a great
grey dots for improved readability. The two shaded rectangles correspond teehede  deal of information, namely the homology eferylevel setf*l(a)
of dy ata= 0.6, and the dots in these rectangles give the homology. and everyinterlevel setf ~1[a, b], as well as the robustness of this
homology. We describe this here in some detail, while referring the
We focus first on the left triangle, as it is the easiest to understarigiader to [3, 11] for precise definitions and statements. First, it can be
There is a birth axis, going downhill on the right, and a death axishown that for any regular valeof f, the homology of the level set
going uphill on the left. For each class that is born and dies durirfg *(a) corresponds to the dots in D@y that lie within two particu-
the first phase of the filtration, we record its birth and death values al@l rectangles. These rectangles have one shared corner located at th
plot them as a dot in this triangle. Note that the diagram in Figured®t a on the vertical line in the middle diamond, and their sides are
contains two dots in this region, one labeled dimension 0, the othaarallel to the two coordinate axes; the dimensions of the dots in the
dimension 1: these correspond to the component that was there fridght rectangle also must be reduced by 1. For example, the dots in
the start, at time 0, but was merged at some early time, and a 1-cyitle two shaded rectangles in Figure 3 give the homologi,((&(O.G).
that formed at a later time and died at a still later time. In general, tAdis level set looks like the boundary of two slightly thickened cir-
closer a dot is to the birth=death diagonal (rendered as the horizortalar arcs; hence its homology consists of two components and two
baseline), the more likely it is to be interpreted as noise, although ttiiscycles. Slidinga along the vertical line produces different rectangle
statement cannot of course be given a precise meaning. Next we qoairs, each of which gives the homology of a different level set.
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We now describe what is meant by the robustness of the homolddie construct the oct-tree in a top-down manner, starting with the one-
of a level setf ~1(a). Given anr > 0, we consider the interlevel setnode oct-tre®, that defines a constant function. We store the external
M, (f,a) = f—l[af r,a-+r], and we define an-perturbation hof f nodes in a priority queue in decreasing ordegofln each iteration,
to be a real-valued functiomsuch thal“h_ f|l, <r. Note then that we remove the external node with highest priority from the queue and
the level seh~1(a) is a subset of; (f,a), and so there is an induced Subdivide it into its eight children. These children become external
map on homology groupis : H(h~(a)) — H(M;(f,a)). The image nodes and are mserted into the priority queue. We continue this pro-
of this map imjj, can be understood intuitively as the set of homolog§€SS Until we satisfy a certain termination condition. For that, we have
classes it (M; (f,a)) that are homologous, withisl (,a), to some gain two choices. We can fix an intedérand stop when the next

homology class i(h~(a)). We then define thevell groupat radius iteration would produce an oct-tree with more thdexternal nodes.
gy cl . U group With this condition, we obtain an oct-tree with best fithess that can be
r to be the intersection of the images of the maps induced b all

perturbations of ; that is achieved usjn@J e>.<ternal nodes. Alternatively, we can fix a real value
' ' 6 and stop if the fitness of the oct-tree becomes less than or equal to
L 6. In this way, we obtain a smallest oct-tree whose fitness is not larger
Ur(f,a) = 1 imjh. than®. Instead of fixing a single integd, we can also fix a sequence
lIh=fll,<r of integersN; < N, < ... < Ny and produce oct-treeg; with best fit-
) nesses, having at mdsg external nodes. The corresponding functions
It can be shown [11] that these well groups can only drop in rank gsgive progressively more accurate approximationgf. Of course,

the radius increases. A radiusat which such a drop occurs will be the same can be done for a sequence of valyes 8 > ... > 6.
called aterminal critical value We plot these terminal critical values

as dots on the non-negative real line. The resulting multi-set of d@® Dual Complex
displays the robustness of the level set, and we call ittlediagram
Ugm(f,a),

These well diagrams can be read directly from Dgjnn the fol-
lowing manner. We draw the rectangle pair corresponding t&or
each dotu within this pair, there will be a dops(u) € Ugm(f,a),
whereps (u) is the distance between this dot and the boundary of thePerturbation. A direct approach to constructing the dual complex
rectangle. In the example shown in Figure 3, with- 0.6, all four runs into difficulties because a corner can be shared by as many as
dots appear to have fairly smaikvalues. This is not surprising. If eight cubes. To cope with this difficulty, we think of each voxel as a
we consider, for example, the functibn= dyy + 0.7, then the level set Voronoi cell the set of points irR3 for which the voxel center is a
h=1(0.6) = d§1(70.1) = 0, and thush cannot support any homology Nearest integer point. We perturb the points slightly such that these
classes whatsoever; hence the robustness of every class in thesteveY@onoi cells are simple polyhedra that meet in three along a shared

We now describe a procedure which takes an octBraad produces
from it a simplicial complex, which we call itdual complexIn Sec-

tion 4 we will prove that, under an added balancing assumption on the
tree, this dual complex is geometrically realizedkih

is certainly less then.d. edge and in four around a shared corner. A particularly straightforwa
such perturbation moves the integer points along the direction of the
3 THE ALGORITHM main diagonal{i, j,k) — (i—em, j —em,k— em), wheree > 0 is suf-

Given a real-valued functiof : R3 — R, the functionfyey is a piece- ficiently small andn=i+ j + k. The perturbation has the same effect

wise constant approximation ¢f By constructing an oct-treB, we

may further simplify fyox, approximating it with a new functiorig
defined on the external nodes of the oct-tree, and then compute the
persistence diagram of this new function. In this section, we describe
an algorithm which accomplishes this. In brief, the main steps of the
algorithm are as follows:

STeP 1. Beginning with the one-node oct-tree, we subdivide external
nodes to produce an oct-tr8e

STEP 2. We construct the nerve of a slightly perturbed version of the
cube complex consisting of the external nodeB.of

STeP 3. We filter this nerve by lower stars (defined below) and com-
pute the associated persistence diagram.

We now describe each of these steps in turn. Fig. 5: A configuration of 27= 32 truncated cubes. Only 14 of the 26 surrounding trun-
cated cubes touch the middle cube.

3.1 Oct-Tree

We assume a real-valuattiority function ¢ that assigns a priority ON every voxel, changing it to a particular type of truncated cube. As

¢(u) > 0 to any oct-tree nodg. Intuitively, ¢ (i) tells us how ur- shown in Figure 5, the truncation flattens Six edg_es to thin rectangular

gently 1 must be subdivided. We require thais zero if the oct-tree faces and it flattens.two diagonally opposite vertices to small hexago-

node only contains one voxel, and thatdecreases in value along nal faces. We c_aIIthlstruncat(_ed_cubpeaturbed voxelRecall that the

paths of the oct-tree. THinessof an oct-treeB is the maximal prior- levelof a node in the oct-treeis its distance frpm the roat nod/e./\ If that

ity of its external nodes®(B) = max, ¢ (u1). Different priority func- Node has level, then it represents a cube of side lengfa” = 2",

tions can be utilized to accomplish different tasks. In Section 4.2, wentaining 8~ voxels. After the perturbation, the node represents

will in particular analyze the properties of the following two: an equally large configuration of perturbed voxels. We refer to this
union as gperturbed cubgnoting that it is not convex unlegs= /.

o d(u) = M(u) —m(u), where M(u) = maxey fuox(y) and However, we can control the amount of non-convexity by choosing
m(u) = mingey fuox(z). In words, the priority of a node is the sufficiently small.

range of the function values inside the corresponding cube. Voxel complex.  Before considering the general case, assBiise

M) —m(p) B the complete oct-tree, that is, its external nodes arettwven vox-

e ¢(H) ==y WhereM andmare as before, antio(1) = g|s. We form thedual complexdenoted a& = K(B), by calling each

minye, | fvox(y)|. This assigns a higher priority to nodes having/oxel avertex We connect two, three, and four vertices byealge a
function values closer to zero. triangle, and atetrahedronif the corresponding perturbed voxels have
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a non-empty common intersection. More concis&lyis isomorphic cubes. We will use this fact in Section 4. Geometrically, we draw each
to thenerveof the collection of perturbed voxels. Geometrically, wevertex at the center of the corresponding cube, and we draw eaeh edg
draw each vertex as the point at the center of the voxel. Edges, triémangle, and tetrahedron as the convex hull of its vertices. However,
gles, and tetrahedra are drawn as convex hulls of the two, three, asdwe will see in Section 4.1, this recipe does not necessarily give a
four centers. geometric realization ifR3. Recall that the dual complex of the array

of N = n3 voxels has at most 26simplices. We now show the same
bound for oct-trees.

1 (Dual Complex Bound) The dual complex of an oct-tree with N
external nodes has at ma&8N simplices.

Fig. 6: Configurations of two, three, and four voxels defining edges, teanghd tetrahe- PROOF. It suffices to prove that the average number of edges in a ver-
drain the dual complex. tex star is at most 14. Since the link of the vertex is a triangulated 2-
sphere, this gives an average of at most 36 triangles and 24 teahedr

Ignoring boundary effects, the dual complex looks the same Wgythe. star. Summing over all vertices and compensating for double-
at every vertex. There are three types of edges: aligned to a coofiLinting, we get #vertices N, #edges< 7N, #triangles< 12N,
nate direction, to the diagonal in a coordinate plane, and to the spéégtrahedrac 6N, and therefore at most Résimplices altogether.
diagonal. Similarly, there are two types of triangles and one type of To count the edges, we replace each external node by the corre-
tetrahedron; see Figure 6. We can assemble six tetrahedra arouncsflding perturbed cubgy. We call another perturbed cubea
shared space diagonal to triangulate a cube. This cube is of the sdi@ighborof i if they intersect. Surrounding by perturbed cubes
size as a voxel, but dual as its corners are the centers of eight voxgfshe same size, we get 14 intersections with neighbors, calling each
We get the entire dual complex by assemb|(ng_ 1)3 such config- intersection aideof [,l, Figure 5 shows the sides of a perturbed voxel.
urations. A single interior vertex belongs to eight such triangulated We look at the neighbors gf that correspond to external nodes of
cubes. For two diagonally opposite cubes, all six tetrahedra share #hig oct-tree. If all such neighbors have the same size ag have an
vertex, while for each of the other six cubes, only two tetrahedra d@dge for each side and therefore exactly 14 edges, as desiredelf the
The resulting 24 tetrahedra form thtar of the vertex, and the bound- are neighbors larger tham then we have possibly fewer edges and
ary of the star is itdink, as shown in Figure 7. Note that the star of &0thing to worry about. The difficult case is when there are neighbors
vertex consists of 14 edges, 36 triangles, and 24 tetrahedra. Multipli§&aller thary. If there is one such neighbor across a sjihen all
tion with the number of voxels and compensation for double-countiriigighbors acrosg are smaller thap:. Furthermore, except for one,
gives upper bounds on the number of simplices in the dual compl@&ch such smaller neighberhas at least two of its sides ip. We
of the voxel array: #vertices n3, #edges< 7ns, #triangles< 12n3, can therefore charge the corresponding edge in the dual complex to
#’[etrahedra_( 6n3_ These bounds are “ght up to lower-order terms. the additional side of. Repeating this reassignment of edgeS for each
cube, we eventually charge at most one edge to each side. The upper
bound on the average number of edges follows.

3.3 Persistence

As described in Section 2, we compute the persistence diagram of
a functionf : M — R by pairing the births and deaths in the corre-
sponding filtration. In the application at hand, the function is defined
onR3, which we compactify by adding a point at infinity, B6is the
3-sphere. We now describe how we use the dual complex to achieve
this goal.

Extraction. We read the simplices off the oct-tree without explicit

Fig. 7: The link of the shaded vertex in the middle, which correspondsdantiddle — perturbation. As mentioned earlier, if a collection of perturbed cubes
cube in Figure 5. Its vertices correspond to the 14 truncated voxels that touctidile  has a non-empty common intersection then so the corresponding un-
truncated voxel. perturbed cubes. Furthermore, this common intersection includes a
point that is a corner of at least one of these cubes. It follows that it-
prating through all corners of external nodes in the octBrescovers
all simplices in the dual compleX. Now suppose we are at a corner
fpoint, 0, and we identified a s&of unperturbed cubes that have 0
in their boundaries. For every subset3)fwve need to test whether or

ot the corresponding perturbed cubes have a non-empty intersection
Since the perturbation has the same effect on every corner, thisseduc
to checking whether the cubes are arranged in a certain configuration
gr@_und the corner, such as the ones displayed in Figure 6.

Oct-tree complex. We generalize the construction of the dua
complex to oct-trees that are not necessarily complete. Lelibg
such an oct-tree, the vertices Iéf= K(B) are the external nodes o
B andK is isomorphic to the nerve of the collection of correspondin
perturbed cubes. The external nodeBadb not all have the same level
so that cubes of different sizes can touch each other. As a comsegue
K is not quite as regular as in the voxel array case. For exari{pie,
no longer a degenerate Delaunay triangulation of the cube centers.
cause we use the perturbed cubes to decide upon the simplices in tH@rdering. For the computation of persistence, we need more,
dual complex, we have € dimNS< 3—i for every collectionSof namely the simplices i in a particular ordering. We restrict the
i + 1 external nodes whose corresponding perturbed cubes have a riscussion to the first phase of the filtration, in which we need the
empty common intersection. This is because the non-empty commsimplices ordered in increasing function value. The second phase is
intersection of a collection of perturbed cubes may shrink, as we lesymmetric, with the simplices ordered in decreasing function value.
go to zero, and in the limit drop in dimension, but it cannot disappear. We are now more precise about this ordering. For each vertex
This implies that the dual complex of an oct-tree is a 3-dimensioni, let fg(u) be the value of the external node. For each simplexK,
abstract simplicial complex. We note that the common intersectionwg definefg(o) equal to the maximum value of any of the vertices
a collection of perturbed cubes does not change its homotopy typechsr. Finally, we sort the simplices in the order of increasing value,
we decrease. In the limit, the intersection is convex. This impliesbreaking ties by ordering lower- before higher-dimensional simplices.
that the intersection is contractible, also for sngaft 0. Hence the This rule implies that the faces of every simplex precede the simplex
Nerve Theorem applies, showing that the homotopy type of the dualthe ordering. Hence, every prefix of the ordering is a subcomplex of
complex is the same as that of the union of perturbed or unperturli¢dThe sequence of these subcomplexes formther star filtration

5



of K. As proved in [10], it gives the same persistence diagram &sur cubes if it does not intersect their interiors and there is at least one
the continuous sequence of sublevel setdfwhich we assume is cube on each side of the plane. Note that due to structural limitations
triangulated byK. The most expensive operation here is the sortingf balanced oct-trees, at least one of the planes EW and NS is sep-
of the simplices. We can therefore improve the performance of theating. We now distinguish between three cases, proving each time
algorithm by sorting the smaller collection of external nodes. This that the centers of the four cubes span a non-degenerate tetrahedron
equivalent to sorting the vertices Kf We then collect the remaining Case 1.All three planes separate the four cubes. The centers of the
simplices by iterating through the external nodes in order. For eactibes then lie on open half-lines that emanate from 0 in space diag-
nodep, we find the corners in its boundary, and for each corner, we ganal directions, that is, all their points are equidistant from the three
the corresponding simplices as described. However, at this time, planes. Since two voxels in the configuration are diagonally opposite
have use only for the simplices whose highest vertgx.ihese are from each other, two of these half-lines belong to the same line. Any
exactly the simplices in thiewer starof . Concatenating the lower plane that intersects both must contain the line. But then, this plane
stars gives the sequence of simplices for the first phase. Adding ta intersect only one of the other two half-lines.

symmetric sequence of upper stars and feeding both to the persistebase 2.Two planes separate the four cubes, say EW and FB. Since NS

algorithm, we get the persistence diagranf of does not separate, at least one of the two cubes in the back occupies
both available octants. By assumption of balance, its size (measured
4 ANALYSIS as the length of its sides) is twice the size of the two stacked cubes

In this section, we describe and analyze two different choices for thethe front, which are of equal size. Their three centers thus lie on a
priority functiong. The first choice is tailored to produce a persistenceertical plane. The center of the remaining cube does not lie in this
diagram that is not too far off from Dgfox), While the second gives plane, no matter whether it has the size of the front cubes or it is twice
a good approximation of the robustness for a particular level set. tfat size. The case in which NS and FB separate is symmetric. The
overcome a technical obstacle to this theory, we use the dual compt@se in which EW and NS separate is different but similar enough to
to get a piecewise linear, continuous function. It defines the level spgrmit the same argument.

and because critical values remain unchanged, it produces the s&rase 3.0Only one plane separates the four cubes, say EW. Then the
persistence diagram to which we can now formally apply the stabiligube on the left occupies all four octants on the left. By assumption of

result (1) mentioned in Section 2. balance, the right cubes are all of the same size and half the size of the
) ) ) o left cube. There are three of them and their centers lie in a plane paral-
4.1 Piecewise Linear Approximation lel to and to the right of EW. In contrast, the center of the left cube lies

The main result in this subsection is that the dual complex of an o¢e-the left of EW. The case in which NS separates is symmetric. In all
tree that satisfies an additional balancing condition is geometricafigses, we conclude that there is no plane that contains the centers of all
realized inR3. We can therefore use it to define a piecewise lined@ur cubes irS. Equivalently, the four centers span a non-degenerate
approximation of the original function. tetrahedron.

Balanced oct-trees. We motivate the balancing condition by an )
example in which the above recipe for drawing the dual complex in Since the tetrahedron spanned by the centers of the four culses in
RR3 does not give a geometric realization. Take two nodes at kevelis non-degenerate, it has a well-defined orientation. In all three cases
and a third node at leval + 2. Arrange them so that the two big cubedn the proof, this orientation is the same for the tetrahedron spanned
share a line segment (an edge common to both), and the little cub®Ysthe centers of the four voxels that share the same point, 0.
nested between them, sharing a face with each and sharing a quarter @eometric realization. It is now not difficult to show that the
one end of the line segment. The dual edge connecting the centerg 4| complex of a balanced oct-tree is geometrically realiz&®irTo
the two big cubes passes through the middle of the line segment 3hd end, we use the Nerve Theorem, which implies that the dual com-
is therefore contained in the union of the two cubes. In contrast, thRy has the same homotopy type as the union of cubes, namely that
dual triangle is not contained in the union of the three cubes. Itis nQy 5 point; see [10, page 59]. Because the tetrahedron defined by the
easy to find two additional cubes sharing a face so that their dual edgges have consistent orientation with those defined by the voxels, we
crosses the triangle. _ o _ also know that any two tetrahedra that share a triangle lie on opposite

This counterexample to geometric realization uses the existencefes of the plane that contains this triangle. To prevent global viola-
two neighboring cubes whose levels differ by at least two. Following,ns of geometric realization, such as tetrahedra that wrap around an
[4], we consider oct-trees that have no such cubes. Specifically, Wgqe or a vertex more than once, we just need to show that the bound-
call two external nodes in an oct-treeighborsif the corresponding ary of K is geometrically realized i3, This is easiest if we add
perturbed cubes have a non-empty intersection. The oct-tie@lis |5yers of cubes around the cubes defined by the oct-tree, getting finer
ancedif every neighbor of an external node at levels at leveld —1,  y5ard the outside until the entire outermost layer consists of voxels.
A, orA +1. Given an unbalanced oct-tree, it is not difficult to find thﬁ'hus, the boundary of our dual complex is the same as the boundary
smallest balanced oct-tree that refines it. We now show that balan¢gghe qual complex of the voxel array that covers the same spaee. Th
oct-trees have significant advantages over unbalanced ones. latter is geometrically realized by construction. We summarize:

Non-degeneracy. Recall that we draw the simplices in the dual ) o
complex as convex hulls of the centers of cubes that are externa node(Geometric Realization Theorem) The dual complex of a bal-
in the oct-tree. We can show that these simplices are non-degenefétged oct-tree is geometrically realizedli.
provided the oct-tree is balanced.
4.2 Thresholds and Error Bounds
2 (Non-degeneracy Lemma) Let S be a collection of 1 external | the following, whenever we need a continuous function, such as
nodes in a balanced oct-tree such that the corresponding perturbgtine definition of a level set, we implicitly substitute the piecewise

cubes have a non-empty common intersection. Then the centers ofi{ier function defined by the dual complex for the piecewise constant
i +1 (unperturbed) cubes in S span a non-degenerate i-sSimpBR.in fynction defined by the oct-tree.

ProOOF All triangles and edges are faces of tetrahedra in the dual com-Uniform thresholding. We first imagine a situation in whicfyox

plex. It thus suffices to prove the claim for= 3, whenS contains varies only a little in certain regions, while varying quite sharply in
four cubes whose corresponding perturbed cubes share a simgie pothers. A typical example is a grey-scale image, which usually has
which we denote as 0. The four cubes contain four voxels, one in eadveral almost constant regions and a few regions of drastic chenge
cube, whose corresponding perturbed voxels share 0. They fe&rm #such a situation, we wish to simpliff;ox in the more uniform regions
last of the six configurations in Figure 6. We consider the planes EWhile maintaining detail in the areas of change. To accomplish this,
NS, and FB, as drawn in Figure 1. We say such a ptaparateshe  we define our priority function a¢(u) = M(u) —m(u) and we stop
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subdividing when we have reached an oct-Beehose fitness is better 5 (Robustness Inference Theorem) There is a bijection I :
than or equal to a chosen threshold. Then we defiinen this oct- Dgm(fg) — Dgm( fyox) such that, for every dot @ Dgm(fg) which
tree viafg(x) = %(M(u) +m(u)), wherep is the external node that corresponds to a homology clagse H(fgl(O)) = H(fvox 1(0)), the
containsx; if x is not in any such node, we s&t(x) = 0. The new dot[ (u) also corresponds ta and we have:
function fg is a simplified version ofyy Since we only need to know
its values on the external nodes. On the other hand, the values of ®(B) )
the two functions do not disagree by much. Hence their respective a- T)pr(u) S Pro(l(U) < (1+ T)pr(u)‘
persistence diagrams do not differ by much. More precisely, we show

In other words we may use the persistence diagram of the simplified
4 (Diagram Inference Theorem) The bottleneck distance betweerfunction fg to make inferences about the robustness of the level set

the diagrams is bounded: /WDgm( fg), DgM( fyox)) < L. under perturbations df,ox.

PROOF. According to (1), we need only show thfg — fyox||, < ° COMPUTATIONAL EXPERIMENTS

®(B)/2. To this end, we fix € R® and prove—®(B)/2 < fg(x) — In this section, we discuss the application of our methods to 3-
fuox(X) < @(B)/2. If x is not contained in any external node, therdimensional images of root systems. Our computations are part of
fa(x) = 0 = fyox(x) and the claim is trivial. So suppose thatis a larger effort to characterize their shape, and to form a relationship
the external node containing and putm = m(u),M = M(u), and between the phenotype and the genotype of agricultural plants. More

¢ = ¢(u). Sincefg(x) = %(M +m) andm< fyox(X) <M, we have  Specifically, we focus here on how the root system explores the space
N B in the soil and how root systems of two or more plants interact.

}(m— M) < fg(x)— fuox(X) < }(M —m). _ Our software. _We have written a prelir_ninary C++ imp_lement_a—
2 2 tion (about 2500 lines of code) of the algorithm presented in Section 3
to compute an oct-tree and its dual complex. For the persistence com-
putation itself, we used Dionysbtsritten by Dmitriy Morozov. More-
over, we have implemented an interactive interface to visualize persis-
The above theorem demonstrates that our algorithm trades spgstte diagrams in Python (about 1000 lines of code). All diagrams in
for accuracy, as we now explain. Given an oct-tBewith fitness®, this paper are generated by this software. We remark that it contains
the bottleneck distance between D) and Dgntfyox) is at most additional features like showing the birth- and death-coordinates of a
®/2. This implies that there is a bijection between subsets of the twiot (by just moving the mouse on it), zooming into regions, or mov-
diagrams that contain all dots of persistence larger thamd no dots ing the location of the level set box (the shaded pair of rectangles in
on the baseline. In other words, all dots with persistence larger thgwe diagrams). As mentioned earlier, we distort coordinates in order
® in Dgm( fg) represent genuine featuresfofy and all features with to draw the extended real ling;, «], as a finite interval. The tool
persistence larger thahin fyox are represented by dots with positiveprovides several scaling functions for this purpose. In this paper, we
persistence in Dg(fg). Hence if we are only interested in the mosiconsistently used a linear scale for the interval between the minimum
persistent classes dfox, we need only subdivide until we reach anand the maximum function value. The software is available from the
oct-tree with reasonable fitness. Such an oct-tree will not have ttrird author on request.
many nodes. Indeed, assuming our original function is Lipschitz, all All experiments are performed on a general computing server
external nodes oB have side length at most some constant ti®es clocked with 2.53 GHz, 8 MB Cache and 96 GB RAM, running un-
and hence the number of simplices in the dual complex is at most soge# Linux. The data sets are obtained from 2-dimensional images of
constant timesn3/d>3. root systems grown and photographed in the Benfey Lab at Duke Uni-
versity. An array of such photographs are then converted into a 3-
rzlj_imensional voxel array representation using the reconstruction soft-

We get the desired inequalities by noting that- m= ¢ < ®(B).

Value-dependent thresholding. We have just described how to
use an oct-tree to simplify a function while maintaining some co h
fidence in the resulting persistence computation. Suppose, on e by Ying Zheng.
other hand, that we are interested in the robustness of a particulabistance from a root. In our first example, we study the Eu-
level set of f, say f~1(0). In this case, we do not wish to changeclidean distance from the root. This defines a real-valued function on
the level set at all. Here, we describe a construction that maintaiR8 whose sublevel sets arise from uniformly thickening the root. The
the level set exactly, while simplifying other regions of the cubeppological analysis of this function provides a characterization of the
we also discuss the consequences for the robustness computati@y. the root system distributes itself in the available space. We can
For each nodg:, we definemg(u) = minyc;, | fvox(y)|, and then set therefore interpret the persistence diagram as a measurement of the
¢(u)=(M(r) —m(u))/mo(u). Note thatp (1) can takeo as a value extrinsic geometry of the root system. The left triangle of the diagram
if some voxel inu is part of the level set; we also use the conventiois shown in Figure 8. The two most persistent homology classes are
thatg = 0 in the priority queue. We again start with the one-node
oct-tree and subdivide external nodes until we reach an oct-tree with
fitness® < 2. Becausdp(x) = %(M +m) andm < fyox(x) < M, we
get—3(M —m) < fg(x) — fuox(X) < (M —m), as before. Substitut-
ing ¢ - mp for M —mand usingp < @ as well as 0< my < | fyox(X)|,
we get

Do)l < 00— fex®) < Do, @ e

for every pointx € R2. In words, the error is bounded from above by _ _ ) ) ) N
the absolute value of half the fitness times the function value. Sinr'(:(:)'%'t iy's‘tz f;nmang'e of the persistence diagram of the distance function ddfinadingle
®/2 < 1, fg and fyox share the same level setat= 0: f,gl(o) = '

-1 . .
fvox~~(0). In particular, the homology of these two level sets are e of gimension 1, and the corresponding dots in the diagram are
tical, and hence it makes sense to compare the robustness of these v:e(4 6.5) andQ = (11,14.8). Intuitively, a 1-cycle is formed when
sets to_perturbatlons of t_he two dlf_ferent functions. The relationship o branches of the root meet while thickening. Looking at the appro-
quite simple. The following result is a corollary of a more general fac

that we state and prove in the Appendix. Ihttp://hg. nrzv. or g/ Di onysus/




Linking between roots. As a second example, we consider the
case of two root systems growing in the same container. We are inter-
ested in a computational criterion that decides whether the two roots
stay at a safe distance from each other or they interact, with branches
of one root entering the area of the other. We use topology to distin-
guish between these two cases. Writthg[R3 — R for the Euclidean
distance function defined by tlh root, we consider their difference,
d=d; —dy and in particular the zero set, 1(0), which consists of the
points with equal distance from both roots. If the roots are separated,
the zero set is a topological plane with trivial homology. On the other
hand, the presence of a 1-cycle in the zero set suggests an interaction
between the two root systems.

Fig. 9: Sublevel sets of the distance function of a root system. Thesdasirves mark
upcoming births and deaths.

priate sublevel sets, we can easily detect the corresponding 1-cycles ¢
the root; see Figure 9. At= 3, we see two thickened branches getting
close to each other (dashed circle) and forming a 1-cydie-a4, the
birth-coordinate oP. Att = 5.5, this 1-cycle is almost filled out and Fig. 11: Two roots along with the surface of equidistant points. Lbg:surface has trivial
dies shortly after at = 6.5, the death-coordinate & In the bottom homology, suggesting the roots do not interact. Right: the surfacedmas g, suggesting
row, we see two thickened branches getting close to each other@t the roots interact.

(dashed circle) and forming a 1-cycletat 11, the birth-coordinate of

Q. This 1-cycle still exists aft = 13 and eventually dies at= 14.8, Figure 11 shows two pairs of roots and the zero sets of the corre-
the death-coordinate @J. sponding functions. We computed the persistence diagrams for both

. . . . pairs, using an oct-tree generated with value-dependent thresholding
Trading speed for accurate diagram. ~ The persistence diagram 4t maintains the zero set (Figure 12). The zero set of the first pair

in Figlurehs takes about 3'(|)I'minute.s to compute; the CO”eSphond,iS‘Qroots has trivial homology, while that of the second pair has a 1-
complex has about 7.6 million vertices. We approximated the digimensional class. The robustness of that 1-dimensional class is suff
tance function using an oct-tree generated by uniform thresholdlrgenﬂy large to be reassured that it is not an artifact of small inaccura-

stopping after a certain number o_f externa_l no_des. Two examples, [9Lc in the measurements or the reconstruction.
40,000 and 160,000 nodes, are displayed in Figure 10; these example

took 16 and 41 seconds to construct. Figure 10 also shows the ey~~*

diagram. We can see that the 40,000-node approximation is quite in
curate but already provides evidence for the existence of two 1-cyc
with high persistence. Furthermore, the 160,000-node approximati
is very close to the exact persistence diagram, with #tet(3.5,5.6)
close toP and a doQ’ = (9.7,13.5) close toQ. The fitness of the tree ) L s st
is about 5.2, which would allow any dot to move up to 2.6 units ¢£————=— S EN

length before reaching the location in the exact diagram; see the Dia-

gram Inference Theorem from Section 4.2. While this would alRdw Fig. 12: Left: triangle in the persistence diagram of the difference in distanoe tixo
to move to the baseline and disappear, we already knowYheadrre-  non-interacting root systems. Right: the same for two interacting rocrsyst
sponds to a class with non-zero persistence. Comparing the approxi-

mate 1-cycles with the exact ones, we see that the actual movement is

about a factor of 2 less than the bound given in the mentioned theorem!rading speed for accurate robustness. Computing the exact
diagrams in Figure 12 took.3 hours for the non-interacting, and 4

hours for the interacting roofsFor the interacting roots, the resulting
dual complex contains about 14 million vertices. As a more practical
alternative, we approximated the persistence diagrams using oct-trees.
Aiming to analyze the robustness of the 1-cycle in the zero set, we
used value-dependent thresholding when assigning priorities to exter-
nal nodes. Figure 13 shows two approximations, using 40,000 and
640,000 external nodes, together with the exact diagram. The approx
. imations took 23 and 166 seconds to compute. We can see that the
et PRI S LS 1-cycle in the zero set already appears for the rather coarse approx
imation with 40000 nodes. For 64000 nodes, we get a (visually)
closer approximation, the fitness of the oct-tree is abo86,1and
the dot representing the 1-cycle has coordinte3.88;4.99). The
. . . . ) corresponding approximation to its robustness.&3 Using the Ro-
e e s Foas. Mo s sastuain st bustness Inference Theorem from Section 4.2, the robustnesstof tha
1-cycle with respect tdyox is greater than.2. We can infer that this
Fig. 10: Cutout of the persistence diagrams for the approximated distaratefudefined CyCl.e is still present under 1-perturbat|ons OT the functipfor exam-
by trees with 40,000 and 160,000 external nodes, and for the exact distantierfuithe ple, if we have made a rendering error that either expanded or retracte

dots of 1-dimensional classes are black, and those of other homology clasgesyare the boundary of one root by one voxel.

2The difference in timing is explained by different input regions.
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[ #Nodes| #Simplices| Ratio ” tepix | toers ” #dots ]
40K 1,004K | 25.11 1.33 4.85 25
80K 2,008K | 25.10 2.69 10.20 39
160K 4,037K | 25.23 5.31 20.84 55
320K 8,170K | 25.53 10.26 42.58 86
640K 16,250K | 25.39 21.10 97.45 255

1,280K 32,678K | 25.53 42.33 | 205.47 310

Table 2: We writélcpi for the time to compute the dual simplex of an oct-tree, @3gdto
compute its persistence. The number of simplices in the complex is skaewrell as the
ratio between number of simplices and number of external nodes. Finallyuthlean of
dots in the resulting persistence diagram is given. All timings are in sscond

Fig. 13: Cutout of the triangle diagram for the interacting roots in FigureFrom top to
bottom, we display approximations for M0 and 640000 external nodes as well as the
exact diagram. The dots of 1-dimensional classes are black, and those of atiwod

the persistence algorithm seems to be roughly linear although it has
been shown to be cubic in the worst case [13]. In summary, we ob-

classes are gray. serve that all operations other than scanning the input voxels take time
roughly linear in the number of external nodes of the approximating
[ [ #Nodes || ten | ton | g | @ ] oct-tree.
160K || 0.34 | 0.09 [ 0.02 [[ 0.025 6 DISCUSSION
75 320K || 0.34 | 0.09 | 0.03 || 0.022 i o ) ) )
640k || 034 | 0.00 | 0.04 | 0.000 The main contributions of this paper are a fast and hierarchical al-
160K 2711 069 | 003 | 0037 gorithm for computing persistence and robustness information for 3-
150% 320K 265 | 0.69 | 007 || 0.032 dimensional image data, a detailed analysis of its accuracy depend-
640K 3.06 | 0.68 | 0.14 || 0.013 ing on the accuracy of the image representation, and an application of
160K || 22.30 | 7.89 | 0.05 || 0.043 these tools to root systems of agricultural plants. The results raise a
300° 320K 22.17 | 8.01 0.13 0.038 number of questions:
640K || 2223 ] 7.91 | 028 || 0.020 To what extent is the observed performance of our algorithm de-

pendent on design details? How would it change if we use mean and
standard deviation of function values to control the construction of the
: i : : >~ " oct-tree? Can a subdivision rule that aims at improving the piecewise
We writetscanfor the time to scgn the mpu.t datgy for the time to compyte the priorities linear as opposed to the piecewise constant approximation improve
(and perform a few other technical operations relate®|4Q), thodesfor the time to compute . d A
the external nodes of the oct-tree, adbr the fitness of the resulting oct-tree. All timings the perfqrmancg? D‘? the reSUItS reported .m thls.paper generalize to
are given in seconds. 4- and higher-dimensional images? In particular, is the dual complex
of a balancedi-dimensional orth-tree geometrically realizedRA?
How does the time and memory required to compute the persistence

Performance. We finally investigate the performance of the thre&liagram scale as the dimension increases? _
main steps of the algorithm, which are: 1. compute the oct-tree with aRegarding the software part, it would be nice to have a mapping
predefined number of external nodes, 2. turn the oct-tree into a simpigtween the persistence diagram and the 3-dimensional image. This
cial complex via the dualization, 3. compute the persistence diagr&fH!d be achieved by displaying the simplices that give birth and death
of the filtration of the simplicial complex; see Section 3. to a homology class represented by a user-selected dot. A somewhat

Part of Step 1 is the computation of the priority of an oct-tree nodiore advanced implementation would display a representative cycle

which requires us to scan through all the voxels contained in the nogsthe class. The authors feel it is important to mention that the tools
scribed in the paper are in no way tailored to the root systems data

Our implementation computes the priorities of all possible oct-tr died | . deed. th | ld includi
vertices that can appear during the subdivision in a bottom-up fagjudied in Section 5. Indeed, they apply to any voxel data, including

ion. This requires us to store the completely subdivided octBrg, medical images.

which occupies a lot of memory and also creates some CompUtatioﬂ%lknowledgments

overhead. On the other hand, all priorities can be computed by scan- - o ) _

ning the input voxels only once. Also, this step can be seen as a p\f@_thank Philip Benfey’s Lab 'at Duke Unlversny'for sharing the photogsapththeir

processing step; the persistence diagram of more and more refiH_%?dmO_t systems. We thank Ylng Zheng for sharing her softwgrg that reconst_raets a

oct-trees can afterwards be computed without reconsidering the inifJiensional model from a series of photographs. We thank Dmitriy Morozowhirg

data again. Table 1 displays results for the case of one plant root, usifig?ionysus software implementing persistent homology for simplimaiplex data and

uniform thresholding (the results are essentially the same for all tes{%rcfnsvyenng our guestlons regardlng thlslsoftware. The first and third aditfaois Duke

instances). We see that the running times for getting the external noa¥ersity for hosting them during the Spring semester of 2010.

is negligible, once the node priorities are known. Computing priorhEFERENCES

ties (and other overhead causedByyx) takes less time than scanning

the input once. The last column denotes the fitness of the octBree, [1] C. L. BAJAJ, A. GILLETTE AND S. GoswAwmI. Topology based selec-

where we have normalized the distance function to the unit interval.  tion and curation of level sets. [fopology-Based Methods in Visualiza-
Steps 2 and 3 of the algorithm are independent of the image size. zgiélg' g'égéHege' K. Polthier, G. Scheuermann (eds.), Springetay,

The performance of Step 2 is determined by the number of extern? C. L BaJas V. PASCUCCI AND D. R. SCHIKORE. The contour spec-

nodes, whereas Step 3 mainly depends on the number of simplic ; tl'l.,lm.|n “Pro’c éth |EEE Conf Vismjaliiation 1997',, 167-173

created in Step 2. In all tested examples, the ratio between producgg P. BENDICH. H. EDELSBRUNNER D. MOROZOV AND A. PATEL.

simplices and input nodes was in a range between 23 and 26, closely '

- c - - Robustness of level and interlevel sets. Manuscript, [ISTstday
matching the upper bound proved in Section 3.2. Table 2 lists the run- Klosterneuburg, Austria, 2009.

ning times for computing the simplicial complex and its persistenc% M. BERN, D. EPPSTEIN ANDJ. GILBERT. Provably good mesh genera-
diagram. We conclude that the time needed to construct the complex  tion. J. Comput. Sys. Sel8 (1994), 384—409.

is linear in the number of external nodes, as expected. Computing pgs] G. CARLSSON, T. ISHKHANOV, V. DE SILVA AND A. ZOMORODIAN.
sistence needs more time, but it still shows a roughly linear behavior. On the local behavior of spaces of local imagksernat. J. Comput.
This is consistent with previous observations that the running time of  Vision76 (2008), 1-12.

Table 1: Results for computing the oct-tree of the distance function ofgesioot system.

9



[6] A. CERRI, M. FERRI AND D. GIORGI. Retrieval of trademark images 6 (Diagram Distortion Theorem) Let f,g: M — R be continuous
by means of size function&raphical Models8 (2006), 451-471. functions. Then there exists a bijectibn Dgm(f) — Dgm(g) such
[7] M. K. CHUNG, P. BUBENIK AND P. T. Kim. Persistence diagrams that(u) € R(u) for every ue Dgm(f).
of cortical surface data. Imformation Processing in Medical Imaging . . . .
Springer-Verlag, LNCS636, 2009, 386-397. N(_)t(le that (1)I foIIow?1 m;nednately from this result, sing&) can cer-
[8] V. DE SILvA AND R. GHRIST. Coverage in sensor networks via persisten{a'rl y be no larger thafif —g|,.
homology.Alg. Geom. Topology (2007), 339-358. Speed limit. In the context we are interested in, we have two
[9] M.-L. DEQUEANT, S. AHNERT, H. EDELSBRUNNER T. M. A. FINK,  functions, fg and fyox, whose difference obeys the following con-
E. F. GYNN, G. HATTEM, A. KuDLICKI, Y. MILEYKO, J. MORTON, straint:\fB(x) _ fvox(X)\ < 9‘ fvox(X)\, for some O< ® < 2. Assuming
A.R.MUSHEGIAN, L. PACHTER, M. ROWICKA, A. SHIU, B. STURM- ¢ ; 2
T = - A e _fvox(X) > 0, this can be rewritten as
FELS AND O. POURQUIE. Comparison of pattern detection methods in
microarray time series of the segmentation cldekoS ONE3 (2008), @ P
2856, doi:10.137/journal.pone.0002856. =)o) = T80 < (1+5)fox(x).

2 2
[10] H. EDELSBRUNNER ANDJ. L. HARER. Computational Topology. An : ; ; ; .
Introduction.Amer. Math. Soc., Providence, Rhode Island, 2009. Abstracting this up a level, we consider two functiong : M — R,

[11] H. EDELSBRUNNER D. MOROzOV AND A. PATEL. Quantifying for which the inequalitiegl — ¢) f(x) < g(x) < (1+c)f(x) hold for
transversality by measuring the robustness of intersestiglianuscript, everyx an.cl SOme constantQ ¢ < 1. the that the speeq of each
Dept. Comput. Sci., Duke Univ., Durham, North Carolina, 2009. pointx Sat's.‘f'e_s‘g(x) N f(x)\ = C|f(x)" Itis therefore .pla.lus'ble th.at

[12] A. GYULASSY, V. NATARAJAN, V. PASCUCCH, P.-T. BREMER AND B. the speed limit(x) also obeys the same bounds. This is not entirely
HAMANN . A topological approach to simplification of three-dimensibn 0PViOUS Sincé (x) contains points other than However, it is in fact
scalar functionslEEE Trans. Vis. Comput. Graph2 (2006), 474—484.  true, as we now show.

[13] D_. MoRozov. Persistence algorithm_ takes cub‘ic time in worst case. Iry (Speed Limit Lemma) Let f,g: M — R satisfy (1 —c)f(x) <
BioGeometry New®ept. Comput. Sci., Duke Univ., Durham, North Car-g(x) < (1+c)f(x) for some0 < ¢ < 1. Then (x) < C‘ f(x)| for ev-

olina, 2005. _ _ery homological critical point x of f.
[14] J. R. MUNKRES. Elements of Algebraic Topologyerseus, Cambridge,

Massachusetts, 1984. PROOF We assuméV is triangulated and® and g are defined by
[15] T. S. NEWMAN AND H. YI. A survey of the marching cube algorithm. piecewise-linear interpolation of their values on the vertices of the tri-

Computers and Graphic30 (2006), 854-879. angulation. To trace the evolution of a homological critical point
[16] V. Pascuccl, G. SCORzELLI, P.-T. BREMER AND A. MASCAREN-  through the homotopy fronfi to g, we consider a piecewise constant

HAS. Robust on-line computation of Reeb graphs: simplicity arekgp  functiony : [0,1] — M with y(0) = x. In other words|0,1] is parti-

ACM Trans. Graphic26 (2007), 58. _ tioned into intervalga;,aj;1), andy(s) = y(t) are the same vertex of
[17] H. SameT. The Design and Analysis of Spatial Data Structuresthe triangulation wheneves < s<t < aj1. Taking the vertices of
Addison-Wesley, Reading, Massachusetts, 1990. the image ofy in sequence, we prove by induction that the speed of

[18] M. SONKA, V. HLAVAC AND R. BOYLE. Image Processing, Analysis agch such vertex obeys the claimed bound. So we assunie(thatc
and Machine VisionSecond edition, PWS Publishing, Pacific Grovec‘ f(x)| for all verticesu from x = y(0) to y(s) with s€ [a,a11). Let
California, 1999. t = a1 andv = y(t), the next vertex in sequence. Assuming without

[19] M. vaN KREFELD, R. VAN OOSTRUM, C. L. BAJAJ, V. PASCUCCI |45 of generality thaf (x) > 0, the inductive assumption tells us that

AND D. R. SCHIKORE. Contour trees and small seed sets for isosurfa - . L
< .
traversalln “Proc. 13th Ann. Sympos. Comput. Geom., 1997”7, 212-22 ¢ e current function value afis fi (v) < f(x) +tcf(x). By definition,

[20] Y. WANG, P. K. AGARWAL, P. BROWN, H. EDELSBRUNNER AnpJ.  1L(Y) = (1=1)f(v) +tg(v). Putting these expressions together and
RupoLPH. Coarse and reliable geometric alignment for protein dockin earranging terms giveR(v) +t(g(v) — f(v)) < f(x) +th(X).’ which
In “Proc. Pacific Sympos. Biocomput., 2005”, 65—75. mplies eitheig(v) — f(v) < cf(x) or elsef (v) < f(x). Inthe first case,
the speed of clearly obeys the desired bound. In the second case, we

APPENDIX obtaincf(v) < cf(x); but the speed of can be no more thaaf(v)

In this Appendix, we prove a refinement of the stability result (1) foRnd so the claim follows.
persistence diagrams; see [10, Chapter VIII]. The Robustness Inf

ence Theorem stated in the body of this paper will then follow. Robustness inference. We now return to the context of the Ro-

Distortion. We abstract away from the piecewise constant settirf}!Sthess Inference Theorem. Fix a d@f (f8(x), fe(y)) € Dgm(fs)
and just assume that we have two continuous functiogs M — R, ~ Which corresponds to a classe H(fg~(0)), and letr(x) andr(y)
whereM is any topological space. A dot in Ddif) represents a pair denote the speed limits afandy, respectively, under the homotopy
(f(x), f(y)), wherex andy are homological critical points df. Toun- from fg to fuox. We suppose here for simplicity thatis in the
derstand how dots in Dgfth) transform into dots in Dgifg), we need lower-left triangle of the diagram. Recall then from Section 2 that
to understand how homological critical points ofransform into ho-  Pf,(U) = min{—fg(x), fg(y)}. By the Diagram Distortion Theorem,
mological critical points ofy. To this end, we consider the homotopythere is a bijectiof : Dgm( fg) — Dgm( fvox) such thaf (u) € R(u) =

fe(x) = (1—1t) (x) +tg(x) between the two functions, whetearies [f8(X)£r(x)] x [fa(y)£r(y)], and itis easy to see that we may choose
from 0 to 1. For any € M, we notice that%(xﬂ —|g(x)— f(x)], and I" such thaf (u) also corresponds to the classOn the other hand, the

we call this number thepeedof x during’the homotopy. Given any SPeed LimitLemma tells us thatx) < 1 fa(x)| andr(y) < Z|fa(y)|.
two pointsx,z € M, we say that is reachablefrom x if there exists a R€Writing the containment in the rectangle, we get

(not necessarily continuous) functign [0, 1] — M such thak = y(0), ® 0

z=y(s) for some 0< s< 1, f; is homologically critical a(t) for each F(u) € Kli 5) fB(X)} x Kli 5) fB(y)} :

t, andf o yis continuous. In other wordg,traces a homological criti-

cal point as the homotopy progresses, but the point may jump over3oppose that the poifit(u) = (a,b). From the containment relation
another location when two homological critical points share the sarabove we derive that
function value. WritingZ(x) for the set of points reachable framwe @ _ _ @
setr (X) = sUpez(x) [9(2) — f(2)], calling this number thepeed limibf g_ JIBEX; i g i 81— &
x. For each doti = (f(x), f(y)) € Dgm(f), we define an axis-parallel 2)BY) = - 2
rectangle since botha and fg(x) are negative. Bups,, (I'(u)) = min{—a,b},

RW) = [0 —1 (3, F00+100] x [F) —r(y), F) () Vo mPIes

@ )
in the plane. The proof of the following theorem is then just a matter 1-2)Pe) = Pie(F(W) = (1+32)pr(U),
of unraveling the definitions: as claimed in the Robustness Inference Theorem.
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