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Abstract. Using ideas from persistent homology, the robustness of a level set
of a real-valued function is defined in terms of the magnitude of the perturba-
tion necessary to kill the classes. Prior work has shown that the homology and
robustness information can be read off the extended persistence diagram of the
function. This paper extends these results to a non-uniform error model in which
perturbations vary in their magnitude across the domain.
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1 Introduction

Numerical errors are an inescapable by-product of scientific and other computations,
and thus they have inspired the creation of entire fields of mathematical inquiry, in-
cluding numerical analysis and statistics. There are many sources, such as randomness,
limited resolution, and limited computational resources. There are also many coping
strategies, such as improving accuracy, or finding credible substitutes for the elusive
ideal. The contributions of this paper belong to the analytic approach that gives esti-
mates on how far the result is from the ideal. More specifically, we study real-valued
functions, which model many real world applications, including medical images and
satellite pictures. To extract information from a function, we consider level and sub-
level sets and their topology expressed in terms of homology groups. The question thus
arises to what extent the homology of a level or sublevel set is sensitive to perturba-
tions of the function. In this paper, we study the effect of perturbations which mimic
the common situation in which measurements vary in their accuracy, and we call these
non-uniform perturbations. We assume that this variation is tied to the location, and
that we have complete information on how the accuracy varies across the domain. We
capture this information in a (non-uniform) error model, which will be formally defined
in Section 3.

On a technical level, we extend the algebraic and measure theoretic concept of per-
sistent homology to non-uniform error models. Specifically, we define the non-uniform
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persistence diagram of a function under an error model, and we relate it to the conven-
tional persistence diagram (defined for uniform error) and to non-uniform persistence
diagrams of other functions under the same error model. Using results from prior work,
we then extend these results to well diagrams, which characterize the robustness of level
sets. The main technical concept is a transformation of functions that turns non-uniform
into uniform error and thus extends much of the machinery of persistent and robust ho-
mology to non-uniform error. Under the additional assumption of the linearity of the
error model, this includes one of the cornerstones of the theory of persistent homology,
namely the stability of the diagram.

Outline. Section 2 reviews the background from persistent homology. Section 3 intro-
duces error models and discusses their effect on the persistence diagrams of functions.
Section 4 introduces dual error models and uses them to transform non-uniform to uni-
form error. Section 5 demonstrates that linear error models give rise to a richer theory
than the more general error models. Finally, Section 6 concludes the paper.

2 Background

In this section, we review the background on homology and on persistence; see Munkres
[13] and Hatcher [12] for standard texts in algebraic topology, and Edelsbrunner, Harer
[10] for a recent book in computational topology. While the material in this section
may seem dry and technical, we remind the reader of the connection to the fundamental
problems of feature extraction, matching, and classification for images, shapes, and
more general data. Indeed, persistent homology has been applied to a host of different
shape and data analysis questions, including for natural images [3], trademark images
[4], brain structure [5], sensor networks [8], and gene expression [9].

Persistence. The persistence of homology classes along a filtration of a topological
space can be defined in a quite general context. For the purposes of this paper, we need
only a particular type of filtration, one defined by the sublevel sets of a real-valued func-
tion on a compact topological space. Given such a space X and a function f : X → R,
we call a set Xr(f) = f−1(−∞, r] a sublevel set, and we consider the nested sequence
of these sets. Whenever r ≤ s, the inclusion Xr(f) ↪→ Xs(f) induces maps on the
homology groups H(Xr(f)) → H(Xs(f)). Here we use modulo 2 homology, that is,
the coefficient group is Z/2Z. In addition, we simplify the notation by taking the direct
sum of the homology groups over all dimensions. A real value r is called a homological
regular value of f if there exists an ε > 0 such that the inclusion Xr−δ(f) ↪→ Xr+δ(f)
induces an isomorphism between homology groups for all δ < ε. Otherwise we call r a
homological critical value. We say that f is tame if the homology groups of each sub-
level set have finite rank and if there are only finitely many homological critical values.
Assuming that f is tame, with ordered homological critical values r1 < r2 < . . . < rn,
we select n+1 homological regular values si such that s0 < r1 < s1 < . . . < rn < sn,
and set Xi = Xsi(f). Note that X0 = ∅ and Xn = X, by compactness. The inclusions
Xi ↪→ Xj induce maps fi,j : H(Xi) → H(Xj) for 0 ≤ i ≤ j ≤ n and give a filtration
of the homology groups:

0 = H(X0) → H(X1) → . . .→ H(Xn) = H(X). (1)



Given a class α ∈ H(Xi), we say that α is born at Xi if α 6∈ im fi−1,i. A class α born
at Xi is said to die entering Xj if fi,j(α) ∈ im fi−1,j but fi,j−1(α) 6∈ im fi−1,j−1. We
remark that if a class α is born at Xi, then every class in the coset [α] = α+im f i−1,i is
born at the same time. Of course, whenever such an α dies entering Xj , the entire coset
[α] also dies with it.

Extended persistence. The filtration in (1) begins with the zero group but ends with a
potentially nonzero group. Hence, it is possible to have classes that are born but never
die. We call these essential classes, as they represent the actual homology of the space
X. To measure the persistence of the essential classes, we follow [7] and extend (1)
using relative homology groups. More precisely, we consider for each i the superlevel
set Xi = f−1[sn−i,∞). By compactness, we have X

0 = ∅ and X
n = X and therefore

H(X,X0) = H(X) and H(X,Xn) = 0. For 0 ≤ i ≤ j ≤ n, the inclusions Xi ↪→ X
j

induce maps on relative homology. We then consider the extended filtration:

0 = H(X0) → H(X1) → . . .→ H(Xn) = H(X)

= H(X,X0) → H(X,X1) . . .→ H(X,Xn) = 0, (2)

and extend the notions of birth and death in the obvious way. Now all classes will
eventually die, as this filtration begins and ends with the zero group. The information
contained within the extended filtration (2) can be compactly represented by persis-
tence diagrams Dgmp(f), one for each dimension p in homology. These diagrams are
multisets of points drawn in three copies of the extended plane, shrunk to finite size and
arranged side by side, as shown in Figure 1. For technical reasons, we always consider
the diagram to contain infinitely many copies of each point on the baseline, where the
birth and death coordinates coincide. By Dgm(f), we mean the points of all diagrams
in all dimensions, overlaid as one multiset of points.
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Fig. 1: The persistence diagram of a function consists of three subdiagrams, Ord, Ext, and Rel,
arranged in a triangle as shown. The points in the two shaded rectangles, L and R, represent the
homology of the level set defined by a.



Contained within each Dgmp(f) are three subdiagrams, corresponding to three dif-
ferent combinations of birth and death location. The ordinary subdiagram, Ordp(f),
contains the point (ri, rj) for each coset of classes that are born at Xi and die entering
Xj . Here, birth and death both happen during the first half of (2). The extended subdi-
agram, Extp(f), contains (ri, rj) for each coset of classes that is born at Xi and dies
entering (X,Xn−j+1). Finally, the relative subdiagram, Relp(f), contains (ri, rj) for
each coset of classes that is born at (X,Xn−i+1) and dies entering (X,Xn−j+1). We
arrange the three subdiagrams side by side, while reversing the birth axis of the ex-
tended subdiagram and both axes of the relative subdiagram. We do so to simplify the
interpretation of the diagram, as will be explained later.

Stability. An essential property of the persistence diagrams is their stability under small
changes of the function. To make this precise, we need to define a distance between
functions and a distance between diagrams. Given two functions f, h : X → R, and a
real number r ≥ 0, we call h an r-perturbation of f if |f(x) − h(x)| ≤ r, for every
x ∈ X. This relation is symmetric and can be used to define a metric on the space of
real-valued functions on X, setting ‖f − h‖

∞
equal to the minimum r such that f and

h are r-perturbations of each other. This is of course the standardL∞-distance between
functions. Given any two persistence diagrams, D and D′, we define the bottleneck
distance between them as the largest distance between matched points (in maximum
norm) under the best possible matching between the diagrams. More formally,

W∞(D,D′) = inf
γ

sup
u

‖u− γ(u)‖
∞
, (3)

where u ranges over all points of the diagram D, and γ ranges over all bijections from
D to D′. We then have:

1 (Stability Theorem [6]) Given continuous and tame functions f, h : X → R on a
compact topological space, we have W∞(Dgmp(f),Dgmp(h)) ≤ ‖f − h‖

∞
for each

homological dimension p.

This result seems natural as we can construct a homotopy between f and h in which the
values change continuously, each by at most ‖f − h‖

∞
. However, consider that criti-

cal points may appear and disappear and global rearrangements may cause the pairing
between critical values change during the homotopy.

Robustness. The persistence diagram of a real-valued function f carries a wealth of
information. For example, it allows us to measure the robustness of the homology of
level sets to perturbations of f . We now make this precise.

Fixing some value a ∈ R and a real number r ≥ 0, we consider the preimage
of the interval: X[a−r,a+r](f) = f−1[a − r, a + r]. For every r-perturbation h of f ,
the level set h−1(a) will be a subset of this preimage, and hence there is an induced
map on homology jh : H(h−1(a)) → H(X[a−r,a+r](f)). Following [11], we say that a
class α ∈ H(X[a−r,a+r](f)) is supported by h if it belongs to the image of jh; in other
words, if the set h−1(a) carries a chain representative of α. The well group of f and
r ≥ 0 is then defined to consist of those classes that are supported by all r-perturbations
of f . It is a subgroup of H(X[a−r,a+r](f)). The sequence of well groups no longer



forms a filtration but a more general zigzag module, introduced recently in [2]. These
modules can still be characterized, albeit less directly, by their persistence diagrams. In
the case of well groups, all births happen at the beginning, so the diagram simplifies to
a multiset of points that mark deaths on the real line. We refer to this multiset as the well
diagram of the function and the value defining the level set. It expresses what we call
the robustness of the homology classes, that is, their resilience to perturbations of the
function. In [1], the authors demonstrate a simple relationship between the persistence
diagrams of f and the well diagrams of f and a, for every a ∈ R. To describe this
relationship, we first define for each homological dimension p two multisets of points:

Lp[a] = {(x, y) ∈ Ordp(f) | x < a, y > a} t {(x, y) ∈ Extp(f) | x < a, y > a},

Rp[a] = {(x, y) ∈ Extp(f) | x > a, y < a} t {(x, y) ∈ Relp(f) | x > a, y < a},

where x refers of course to the birth coordinate and y to the death coordinate of the
point; see Figure 1. Then the p-dimensional homology of f−1(a) is characterized by
points (x, y) in Lp[a] ∪ Rp+1[a]. If the point belongs to Lp[a], then its robustness is
equal to min{a−x, y−a}, while if the points belongs to Rp+1[a], then its robustness is
min{x− a, a− y}. To get the well diagram of f and a, we then just plot the robustness
value for every point in Lp[a] ∪ Rp+1[a] on the real line.

3 Non-uniform Error

In this section, we extend the concepts of persistence and robustness from a uniform to a
non-uniform notion of error. We begin by introducing the error model as a 1-parameter
family of functions.

Error model. It is convenient to substitute the extended real line, R̄ = R ∪ {−∞,∞},
for R as the range of our functions, and therefore also of the error model.

2 (Definition) An error model on a compact topological space X is a continuous map-
ping E : X× R̄ → R̄ that satisfies the following two properties:

monotonicity: E(x, r) < E(x, s) for all x ∈ X and all r < s;
normalization: E(x, 0) = 0, E(x,∞) = ∞, E(x,−∞) = −∞, for all x ∈ X.

The error model is uniform if E(x, r) = r for all (x, r) ∈ X× R̄, and it is non-uniform
otherwise.

Fixing either a point x or a radius r, we get restricted functions ex : R̄ → R̄ and
er : X → R̄ defined by ex(r) = er(x) = E(x, r). Note that the two conditions
above guarantee that ex is invertible, a property we make use of later. Intuitively, one
might imagine r to be a global noise parameter which leads, via the error model E, to
a variable amount ex(r) of noise across X. The continuity of E models our assumption
that errors are not independent and indeed are closely related for nearby points. In
Section 5, we will add the further assumption that E is linear, meaning E(x, r) =
r ·E(x, 1) for all (x, r) ∈ X× R̄. For the moment we make no such requirement of our
model.



Non-uniform filtrations and persistence. Given a function f : X → R̄ and any two
values r ≤ s, the standard notion of an interlevel set is the preimage of the interval:
X[r,s](f) = f−1[r, s]. In applications in which X is 3-dimensional, this construct is
often referred to as an interval volume. Extending it to our framework, we define the
non-uniform interlevel set as the set of points with image between the bounds specified
by the error model:

X[r,s](f, E) = {x ∈ X | E(x, r) ≤ f(x) ≤ E(x, s)}.

As illustrated in Figure 2, we can construct the non-uniform interlevel set by inter-
secting the graph of f with the strip of points between the graphs of er and es, and
projecting the intersection to X. In the special case in which r = −∞, we write

X

R̄
graph f

graph er

graph es

Fig. 2: The graph of a function f , the shaded strip bounded from below and above by the graphs
of restrictions of the error model, and the non-uniform interlevel set obtained by projecting the
intersection. For r ≤ 0 ≤ s, the non-uniform interlevel set contains the zeroset of f .

Xs(f, E) = X[−∞,s](f, E) and call it a non-uniform sublevel set. Similarly, if s = ∞,
we write Xr(f, E) = X[r,∞](f, E) and call it a non-uniform superlevel set.

Whenever r ≤ s, the monotonicity requirement guarantees the inclusion ofXr(f, E)
in Xs(f, E), and the inclusion of Xs(f, E) in X

r(f, E). Hence, just as in Section 2, the
non-uniform sublevel and superlevel sets give an extended filtration of X. As a result,
we have in each homological dimension p a non-uniform persistence diagram, denoted
by Ngmp(f, E). As before, we write Ngm(f, E) for the overlay of the diagrams in all
dimensions. In Section 5, we will see that, under the assumption of a linear error model,
these non-uniform diagrams are stable.

Non-uniform perturbations and robustness. Now suppose that we have a function f :
X → R̄ as well as an error modelE : X× R̄ → R̄. As promised, we create a theoretical
language to quantify the robustness of the homology of a level set f−1(0) under non-
uniform perturbation. Given another function h : X → R̄ and a value r ≥ 0, we say
that h is a non-uniform r-perturbation of f , with respect to E, if

E(x,−r) ≤ f(x)− h(x) ≤ E(x, r), (4)



for all x ∈ X. For example, every function of the form f − es, with s ∈ [−r, r], is a
non-uniform r-perturbation of f . If E is linear, or indeed if each ex is odd, meaning
ex(−r) = −ex(r) for every r, then f will also be a non-uniform r-perturbation of h,
but this need not be true in the general case. It is useful to understand the connection
between non-uniform perturbations and interlevel sets.

3 (Non-uniform Perturbation Lemma) A function h : X → R̄ is a non-uniform r-
perturbation of f : X → R̄, under the error model E : X × R̄ → R̄, only if h−1(0) ⊆
X[−r,r](f, E).

Proof. Starting with the definition of a non-uniform r-perturbation, we get

E(x,−r) ≤ f(x) ≤ E(x, r),

for all points x with h(x) = 0. The two inequalities define the non-uniform interlevel
set defined by −r ≤ r, which implies the claimed containment.

We note that X[−r,r](f, E) is the smallest interlevel set that contains the zeroset of
every non-uniform r-perturbation. In other words, it is the union of all these zerosets.
Compare this with the fact that X[−r,r](f, E) is also the union of the zerosets of the
functions f − es, for all s ∈ [−r, r]. Adopting the terminology from Section 2, we can
now define the non-uniform well group of f , E, and a value r ≥ 0 to consist of those
classes in H(X[−r,r](f, E)) that are supported by all non-uniform r-perturbations of
f . Correspondingly, we get the non-uniform well diagram that characterizes the non-
uniform robustness of the homology of f−1(a) under the error model E.

4 Transformation to Uniform Error

In this section, we show that the non-uniform persistence and well diagrams of a func-
tion f and an error model E are really just the uniform diagrams of another function.
To do so, we create a dual error model, E∗, which enables us to transform non-uniform
interlevel sets and perturbations into uniform interlevel sets and perturbations.

Dual error model. Given an error model E : X × R̄ → R̄, we recall that the function
ex : R̄ → R̄ defined by ex(r) = E(x, r) is invertible for every x ∈ X. We thus have
the following definition.

4 (Definition) The dual error model of E is the unique mappingE∗ : X× R̄ → R̄ that
satisfies E∗(x,E(x, r)) = r for every (x, r) in X× R̄.

Considering the restrictions of E and E∗ obtained by fixing a point x, we note that
e∗x = e−1

x . The name of E∗ is justified by the following result. For technical reasons, it
needs the additional assumption that X be first-countable [14]. This assumption is rather
mild; for example, it is satisfied whenever X can be embedded in finite-dimensional
Euclidean space.

5 (Duality Lemma) Given an error model E : X × R̄ → R̄ on a compact and first-
countable topological space X, then (i) E∗ is an error model, (ii) (E∗)∗ = E, (iii) E∗

is linear iff E is linear.



Proof. Claims (ii) and (iii) are obvious. For Claim (i), we note that monotonicity and
normalization for E immediately imply the same properties for E∗. So we must only
prove that E∗ is a continuous function from X × R̄ to R̄. To do this, we make use of
the following lemma from point-set topology: Assuming a first-countable space W and
a compact space Y, a mappingH : W → Y is continuous iff the graph of H is a closed
subset of W× Y; see eg. [14]. In our context, we have W = X× R̄ and Y = R̄.

By assumption, E is continuous, and thus the graph of E is a closed subset of
X × R̄ × R̄. On the other hand, the graphs of E and E∗ are homeomorphic. To see
this, recall that graphE = {(x, r, a) ∈ X × R̄ × R̄ | E(x, r) = a}. Switching the
last two arguments gives a homeomorphism ψ : X × R̄ × R̄ → X × R̄ × R̄ de-
fined by ψ(x, r, a) = (x, a, r). Then (x, r, a) ∈ graphE iff (x, a, r) ∈ graphE∗.
In other words, the restriction of ψ to the graph of E provides a homeomorphism be-
tween graphE and graphE∗. In particular, the graph of E∗ is closed. Applying the
lemma once again, we conclude that E∗ is continuous.

Transforming functions. The dual error model E∗ of E allows us to associate to each
function f a transformation Γf that turns non-uniform interlevel sets into uniform ones,
as we now explain. Given such f , we create a new function Γf (f) defined by the rule
Γf (f)(x) = E∗(x, f(x)) for each x ∈ X. This definition is illustrated in Figure 3.
To construct Γf (f) geometrically, we use the subset of the graph of E that projects

R̄

R̄

X

Fig. 3: The surface is the graph of the error model, E. We also see the graph of f in the vertical
plane, the graph of Γf (f) in the horizontal plane, and the curve in the surface that projects to
both. We note that f and Γf (f) have the same zeroset.

to the graph of f in X × R̄. The projection of the same subset to X times the other



copy of R̄ gives the graph of Γf (f). As mentioned earlier, this transformation forms a
correspondence between non-uniform and uniform interlevel sets.

6 (Interlevel Set Transformation Lemma) For every r ≤ s, the non-uniform inter-
level set of f and E is the uniform interlevel set of Γf (f); that is, X[r,s](f, E) =
X[r,s](Γf (f)).

Proof. Assume first that x ∈ X[r,s](f, E). Applying the strictly increasing function e∗x
to the chain of inequalities ex(r) ≤ f(x) ≤ ex(s) gives

r ≤ e∗x(f(x)) = E∗(x, f(x)) = Γf (f)(x) ≤ s,

and so x ∈ X[r,s](Γf (f)). Reversing the argument proves the claim.

In particular, the non-uniform sublevel and superlevel sets of f and E are the uni-
form sublevel and superlevel sets of Γf (f). This implies that the extended filtrations
defined by f and E and by Γf (f) are the same. Hence, they define the same sequence
of homology groups and maps between them, and therefore also the same persistence
diagrams.

7 (Persistence Diagram Lemma) The transformation Γf turns non-uniform persis-
tence diagrams into uniform ones; that is, Ngm(f, E) = Dgm(Γf (f)).

Transforming perturbations. We now generalize the above construction, applying Γf
to any other function h : X → R by setting

Γf (h)(x) = Γf (f)(x)− E∗(x, f(x)− h(x)),

for each x ∈ X. Of course, we could perform a similar operation using Γh, but Γf (h)
and Γh(h) are not necessarily the same. In Section 5, we will see that a linear error
model guarantees the equality of Γf (h) and Γh(h). Even without this assumption, we
have the following:

8 (Perturbation Transformation Lemma) The transformation Γf turns non-uniform
r-perturbations into uniform ones; that is, h is a non-uniform r-perturbation of f iff
Γf (h) is a uniform r-perturbation of Γf (f).

Proof. Assume that h is a non-uniform r-perturbation of f . By definition, we have
ex(−r) ≤ f(x)−h(x) ≤ ex(r) for every x ∈ X. When we apply the strictly increasing
function e∗x to this chain of inequalities, we get

−r ≤ e∗x(f(x) − h(x)) = E∗(x, f(x) − h(x)) = Γf (f)(x) − Γf (h)(x) ≤ r,

which implies that Γf (h) is a uniform r-perturbation of Γf (f). Reversing the steps
proves the claim.

The two Transformation Lemmas together imply that the non-uniform well diagram
of f andE is identical to the uniform well diagram of Γf . In other words, the robustness
of each level set to non-uniform perturbation can be read directly off Ngm(f, E) =
Dgm(Γf (f)) in the manner discussed in Section 2.



5 Linear Error

In this section, we demonstrate that the imposition of linearity on our error model E
leads to a richer theory of persistence. More specifically, we assume thatE is linear and
use this fact to define a metric on the space of all functions. Then we show that, under
this metric, non-uniform persistence diagrams are stable.

Metric. Recall that an error model E is linear if E(x, r) = r · E(x, 1), for all x ∈ X

and all r ∈ R̄. Put another way,E is linear if all of the functions ex are linear. Whenever
we have such a model and two functions f and h, we may rewrite the inequalities in (4)
as |f(x) − h(x)| ≤ E(x, r). In other words, f is a non-uniform r-perturbation of h iff
h is a non-uniform r-perturbation of f . This leads us to define the following notion of
non-uniform distance between h and f :

dE(f, h) = min{r | |f(x)− h(x)| ≤ E(x, r), for all x ∈ X}.

9 (Metric Lemma) Assuming a linear error model E, dE is a metric on the vector
space of all R̄-valued functions on X.

Proof. Since E(x, 0) = 0, we have f = h iff dE(f, h) = 0. Furthermore, dE(f, h) =
dE(h, f), as discussed above. It remains to prove the triangle inequality: dE(f, h) ≤
dE(f, g) + dE(g, h). Put R = dE(f, g) and S = dE(g, h) and fix a point x ∈ X. Then
using the triangle inequality for the standard metric in R̄, we find

|f(x)− h(x)| ≤ |f(x)− g(x)|+ |g(x) − h(x)|

≤ E(x,R) +E(x, S)

≤ E(x,R + S).

This implies dE(f, h) ≤ R+ S and the claim follows.

We note that the Metric Lemma still holds under a weaker assumption onE. Namely,
we need only assume that for each x ∈ X, ex(−r) = −ex(r) and ex(r) + ex(s) ≤
ex(r+s), for all r, s ≥ 0. In words, each ex is odd and also convex on the non-negative
half of the extended real line.

Stability. We now compare the non-uniform persistence diagrams of two functions f
and h on X, and prove that their bottleneck distance is bounded from above by the non-
uniform distance between the two functions. First we need to show that for a linear error
model, the transformations defined by different functions are the same.

10 (Linear Transformation Lemma) Let f, h : X → R̄ be two functions. Assuming
a linear error model E, we have Γf (h) = Γh(h).

Proof. Fix a point x ∈ X. Starting with the definition, we get

Γf (h)(x) = Γf (f)(x) −E∗(x, f(x) − h(x))

= E∗(x, f(x)) −E∗(x, f(x) − h(x))

= E∗(x, h(x)),



where we use linearity to get from the second to the third line. But the third line is equal
to Γh(h)(x), and the claim follows.

The Linear Transformation Lemma justifies the notation Γ (h) to refer to the com-
mon function Γf (h) for any other function f . As an immediate consequence of the Per-
turbation Transformation Lemma, we then find dE(f, h) = ‖Γ (f)− Γ (h)‖

∞
. Finally,

we get the stability of the non-uniform persistence diagrams.

11 (Non-uniform Stability Theorem) For any two f, h : X → R̄, and a linear error
model E, we have: W∞(Ngm(f, E),Ngm(h,E)) ≤ dE(f, h).

Proof. First we transform f and h into Γ (f) and Γ (h), recalling from the Persistence
Diagram Lemma that Ngm(f, E) = Dgm(Γ (f)) and Ngm(h,E) = Dgm(Γ (h)).
Applying the Stability Theorem to the two uniform persistence diagrams, we find

W∞(Dgm(Γ (f)),Dgm(Γ (h))) ≤ ‖Γ (f)− Γ (h)‖
∞

= dE(f, h),

and the result follows.

6 Discussion

The main contribution of this paper is the extension of the machinery of persistent
homology to non-uniform error models. This extension is not complete and many ques-
tions remain yet unanswered.

On the technical level, it would be interesting to gain a more detailed understanding
on how the difference between Dgm(f) and Ngm(f, E) relates to the error model, E.
Similarly, can we extend the Non-uniform Stability Theorem from linear to non-linear
error models? A more challenging question is the extension of robustness under non-
uniform error to a full-blown probability theory of the homology of level sets.
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