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Abstract

The theory of intersection homology was developed to study the
singularities of a topologically stratified space. This paper in-
corporates this theory into the already developed framework of
persistent homology. We demonstrate that persistent intersec-
tion homology gives useful information about the relationship
between an embedded stratified space and its singularities. We
give, and prove the correctness of, an algorithm for the computa-
tion of the persistent intersection homology groups of a filtered
simplicial complex equipped with a stratification by subcom-
plexes. We also derive, from Poincaré Duality, some structural
results about persistent intersection homology.

AMS Subject Classifications 55N33, 68.

1 Introduction

Over the last several years, computational topology has
grown into a flourishing area. A cornerstone of the sub-
ject is persistent homology, introduced in [16]. Persistent
homology is a method for measuring features of a filtered
topological space. The theory has expanded to include a
number of topological tools including Poincaré and Lef-
schetz duality [11], Mayer-Vietoris sequences [10] and
Morse Theory [15].

Persistent Intersection Homology. In [18], Goresky
and MacPherson developed intersection homology theory
as a tool for the study of stratified spaces. Briefly, these
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are spaces obtained by piecing together manifolds of dif-
ferent dimensions in a controlled and coherent fashion.
The goal of this paper is the incorporation of intersection
homology into the persistence framework, with several
types of potential applications which we describe below.

After defining persistent intersection homology we give
an algorithm for its computation in a simplicial setting.
While the full definition and topological meaning of in-
tersection homology is rather involved, its algebraic de-
scription is quite simple. One defines intersection homol-
ogy chains by starting with an ordinary simplicial chain
complex and removing certain simplices from considera-
tion to obtain a new chain complex, and then one simply
computes the homology of this chain complex.

Here we will abstract this algebraic process into a defi-
nition of what we callφ−homology, where any arbitrarily
chosen binary functionφ represents the simplex removal
decision procedure. We then defineφ−persistence and
give an algorithm for its computation. Persistent inter-
section homology will then be described as one case of
φ-persistence, but one in which the functionφ has an ob-
vious topological meaning based on the singularity struc-
ture of the space.

A key fact about intersection homology, proven in [18],
is that it provides Poincaré Duality for stratified spaces;
using ordinary homology theory, duality fails. We will use
Poincaŕe Duality to prove a series of symmetry results for
persistent intersection homology on a embedded stratified
space which is filtered by the sublevel sets of a function.
These symmetries closely mirror those held by the usual
persistent homology on an embedded and filteredmani-
fold ([11]).

In [1] manifold symmetries were used to define an ele-
vation function on an embedded2-manifold. The critical
points of this function help to locate important features,
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such as “pockets” and “protrusions” on the manifold. The
theory has subsequently been used to study protein dock-
ing in [27]. In an upcoming paper [6], we follow a sim-
ilar pattern: the symmetry properties for persistent inter-
section homology are used to define a series of elevation
functions which will be more sensitive to the singulari-
ties of an embedded2-dimensional stratified space. The
most immediate application envisioned is in the study of
the protein-protein interface surface ([2]).

We also expect that persistent intersection homology
will play a role in a more ambitious program: the analysis
of high-dimensional datasets (point clouds). In particu-
lar, in certain cases point clouds appear to be samples of
stratified spaces. Since the study of datasets is plagued by
thecurse of dimensionality, methods have been developed
to reduce the dimension of the dataset. We can think of
this as searching for dependency among variables, thereby
recognizing that the dataset is really a noisy version of
a smaller dimensional manifold. This process is called
manifold learning(for some techniques, see, for example
[3] and [26]). Implicit in most of this work is the assump-
tion that the dataset lies on a manifold, often a hyperplane,
and therefore that the dimensionality of the dependence is
constant. Of course it is well known in the manifold learn-
ing community that this is not true in general, but so far
there are no formal methods for discovering the structure
of the dimension changes that may occur.

Local homology groups are a traditional algebraic tool
for analyzing stratified spaces; briefly, they provide a ho-
mological description of the neighborhood of a (possi-
bly) singular point on the space. A persistent version of
these groups was defined in [5] in order to infer the pos-
sible stratifications of the underlying spaces from which
the dataset might be sampled. Persistent intersection ho-
mology aides this analysis since intersection homology
groups are designed to capture structures of interest in sin-
gular spaces.

Outline. In Sec. 3, we recall the definition of persistent
homology and briefly review the algorithm for its compu-
tation. We also give an example which shows its limita-
tions when applied to an embedded stratified space. Sec.
4 definesφ-persistence and gives an algorithm for its com-
putation, although a proof is deferred until the Appendix.

The paper then switches gears into a discussion of in-

tersection homology. Sec. 5 discusses the category of
topologically stratified spaces. The intersection homol-
ogy groups of a stratified space, as well as the concept of
intersection homology persistence, are then described in
Sec. 6. As these concepts are rather involved on a first
reading, we work an extended example in Sec. 7. This
example illustrates the Duality and Symmetry properties
enjoyed by intersection homology persistence. We for-
mally describe these properties in Sec. 8. Finally, Sec.
9 describes how to filter a simplicial complex, via sub-
divided stars, in such a way as to effectively mimic the
intersection homology persistence on an actual stratified
space.

2 Results and Relation to Prior
Work

2.1 Persistence.

The history of persistence is surveyed in [14]. Versions of
persistence emerged independently in [17], [7], [25] and
[16]. Later work on the theory and some of its applica-
tions can be found in e.g. [12], [11], [9], [10] and [8],.

2.2 Intersection Homology.

The intersection homology groups of a triangulated topo-
logically stratified spaceX were first defined by Goresky
and MacPherson in [18]. The same authors gave a differ-
ent definition using sheaf theory in [19], while King put
the theory into a singular chain context in [22]. Our ver-
sion of intersection homology differs slightly from those
above, for reasons that we now briefly discuss.

The authors in [18] impose the condition that their strat-
ified spaces have no strata of codimension one. Since
their primary application was to complex algebraic vari-
eties, this was not a troublesome requirement. They also
imposed a condition on perversities (explained below) to
ensure that their definition was independent of the choice
of stratification. We, on the other hand, envision applying
this theory to all types of stratified spaces, and hence wish
to make no assumptions on stratum-codimension. Drop-
ping this assumption has two consequences, however:

1. Poincaŕe Duality no longer holds.
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2. Intersection homology groups are no longer indepen-
dent of choice of stratification.

The first problem is easily dealt with by a slight al-
teration of the original definition. Instead of working
with ordinary chains, we use the relative chain groups
C∗(X,Σ), whereΣ is the singular set ofX. As proven in
[4], this restores Poincaré Duality. The second problem,
on the other hand, is not a problem at all but a feature that
we desire since our goal is to apply the theory developed
here to point cloud data where the stratification is in fact
the very structure that we seek.

2.3 Results.

The main results of this paper are the following.

• The definition ofφ-persistence (with persistent inter-
section homology as its main example), and an algo-
rithm for its computation.

• Duality and Diagram Symmetry results for intersec-
tion homology.

• The Subdivided Star Filtration.

3 Persistence

We begin this section by reviewing the definitions of ordi-
nary and extended persistent homology for a topological
space equipped with two filtrations by closed subspaces.
We then present two examples: a one-dimensional mani-
fold and a two-dimensional stratified space, each filtered
by the sublevel and superlevel sets of a height function.
The latter example motivates our extension of the theory
to persistent intersection homology. Along the way, we
define the persistence diagram of a function and its sub-
diagrams. The section concludes with a brief description
of the persistence algorithm ([16]).

3.1 Definition of Persistence.

Suppose thatX is a topological space and that

∅ = A0 ⊂ A1 ⊂ . . . ⊂ An−1 ⊂ An = X

is a filtration ofX by closed subspaces. Suppose further
thath : {0, . . . , n} → R is a monotone increasing func-
tion that assigns a height to each level. Fix a dimensionr
and letHi

r = Hr(Ai; Z/2Z), 0 ≤ i ≤ n. Wheni < j,
the inclusionAi →֒ Aj inducesf i,j

r : Hi
r → Hj

r , whose
image consists of all homology classes that live at least
fromHi

r toHj
r .

For a particular classα we define its (ordinary)persis-
tenceto be the difference between the height values of
its birth and death. Specifically,α is born at Ai if α ∈
H

i
r− im f i−1,i

r anddiesatAj if f i,j−1
r (α) 6∈ im f i−1,j−1

r

but f i,j
r (α) ∈ im f i−1,j

r . The persistenceof α is then
|h(j)− h(i)|.

The classes that are born at stagei and die at stagej
form thepair group;

P
i,j
r =

im f i,j−1
r ∩ ker f j−1,j

r

im f i−1,j−1
r ∩ ker f j−1,j

r

. (1)

Extended Persistence A class that is born at some level
and never dies is called anessential class. Essential
classes represent the actual homology of the space and
are not paired by ordinary persistence. But there are geo-
metric reasons that we might wish to assign them a persis-
tence, and we can do this when we have a second filtration
of X by closed subspaces:

∅ = D0 ⊂ D1 ⊂ . . . ⊂ Dn = X

We ascend usingA and descend usingD. Specifically,
put Hn+j

r = Hr(X,Dj) for 0 ≤ j ≤ n and use the
following sequence to extend the notions of birth, death,
persistence, and pair group.

0 = H0
r → H1

r → . . .→ Hn
r →

Hn+1
r → Hn+2

r . . .→ H2n
r = 0

Since the sequence is bracketed by zero groups, all classes
born must eventually die. A class whose birth and death
occurs during the top half of the sequence is called an
ordinary class, while a class whose birth and death occurs
during the bottom half is called arelative class, Finally,
a class whose birth and death straddles both halves of the
sequence is anextended class.
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Figure 1: A manifold with a height function, along with the ex-
tended persistence diagram. In the diagram, points are labelled
by dimension. Circles, squares, and triangles represent ordinary,
relative, and extended pairs, respectively.

3.2 Height Function Examples.

To illustrate the definitions above, as well as to provide
partial justification for the development of intersection
homology persistence, we briefly present two examples.
Along the way, we will see a type of duality for pair
groups which holds as long asX is a manifold, but can
fail otherwise.

One-Manifold. Consider the spaceX, topologically a
circle, but embedded in the plane as shown in Fig. 1. Let
f : X → R measure height in the vertical direction. We
filter X by the sublevel sets off , Xa = f−1((−∞, a]),
and the superlevel setsXa = f−1([a,∞)).

As one may easily see, the topology of these sets will
only change when we pass one of the critical points la-
beled in Fig. 1, a general fact from Morse Theory ([24]).
Interleaving regular valuesa0 ≤ f(A) ≤ a1 ≤ f(B) ≤
. . . ≤ f(F ) ≤ a6, we defineAi = Xai

andDj = Xa6−j .
Moving up along the ascending filtration, a component is
born at each of the pointsA, B andC. The component
born atC dies as we pass pointD, while the one born at
B dies atE. Finally, at pointF , an essential one-cycle
is born. Descending, the essential component born atA
become trivial passingF , sinceH0(X,F ) is trivial. Rel-
ative one-cycles born atE andD die atB andC, respec-
tively. Finally the essential one-cycle becomes trivial at
A.

In terms of Equation 1, the nonzero pair groups are
P 1,7

0 , P 2,5
0 , P 3,4

0 , P 6,12
1 , P 8,11

1 , andP 9,10
1 . Each has rank

one.

Persistence Diagrams and Subdiagrams Both ordi-
nary and extended persistence pairs can be encoded com-
pactly in a persistence diagram. For each nonzero basis
element of a pair group, we locate the critical point that
created the class and the critical point that destroyed it.
These two points are paired together, and we plot their
height values asx, y coordinates in the plane. For ex-
ample, the ordinary pair represented byP 2,5

0 is plotted
as the point(f(B), f(E)), while the extended pair that
measures the essential cycle gives the point(f(F ), f(A)).
The diagram for this example is shown on the right in Fig.
1.

In general, the persistence diagram associated to the fil-
trations given by a height functionf is denotedDgm(f),
with Dgmr(f) being the restriction to dimensionr.
Within each persistence diagram are overlaid several im-
portant sub-diagrams which we label with the symbols
Ordr(f), Relr(f), Extr(f) to stand for, respectively, or-
dinary, relative, and extended pairs in dimensionr.

Pair Group Duality The reader will note the obvious
symmetry in the persistence diagram above. This holds
becauseX is a manifold and is a consequence of Poincaré
Duality. If we assume that our functionf hasn critical
points and thatX is a d-manifold, then duality can be
expressed in the following way ([11]),:

1 (Pair Group Duality) For 0 ≤ i < j ≤ 2n, 0 ≤ r ≤
d, intersection of homology classes induces a perfect pair-
ing

P i,j
r ⊗ P

2n−j+1,2n−i+1
d−r → Z/2Z

Stratified Spaces. Next consider the spaceX shown in
Fig. 2. Topologically,X consists of a pinched torus with
a disc attached. This disc, not pictured, is attached along
the dotted circle drawn passing through pointsB, D and
F . X is an example of a2-dimensional stratified space, an
object described in greater detail in Sec. 5. Imagine that
the functionf measures height in the vertical direction
and that we filterX by sublevel and superlevel sets as
before.
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Figure 2: A disc (not pictured) is attached along the drawn
curve.

Although a rigorous argument requires Stratified Morse
Theory ([20]), it should be clear that the only possible
homological changes occur upon passing the points la-
beled with letters in Fig. 2. Actually, nothing whatsoever
happens at the pointB since the sublevel set just after
f(B) deformation retracts onto the sublevel set just be-
fore it. Similarly, nothing happens upon passing the point
F . This means that persistent homology does not mea-
sure the height difference between the minimum of the
torus and the minimum of the attached disc which is an
important piece of information about this space and its
singularities. Intersection homology persistence, on the
other hand, will capture this information, as it is more
finely tuned to shape changes caused by the presence of
singularities.

Note also that Pair Group Duality fails for this exam-
ple. This is not surprising, since Poincaré Duality does
not hold for non-manifolds. On the other hand, intersec-
tion homology restores a version of Poincaré Duality to
stratified spaces. As we explain below, this means that we
can recover a version of Pair Group Duality.

3.3 Algorithm.

We now briefly review the algorithm for the computation
of the persistent homology pairings on a simplicial com-
plexK equipped with a filtration{Ki} and a height func-
tion h as above. For the details on the extended persis-
tence algorithm for a complex equipped with two filtra-
tions, we refer the reader to [11].

The first step is to refine the input filtration to one in
which one simplex is added at each level. We do this by
ordering the simplices arbitrarily within eachKi −Ki−1

while ensuring that a simplex precedes all of its cofaces in
the ordering. The height values coming from the function
h are maintained, and so the reordering does not affect the
persistence values defined above.

Positive and Negative Simplices. SupposeK has n
simplicesσ1, . . . , σn, with Ki = Ki−1 ∪ {σi}. Fix ani
and assume dim(σi) = r. Letα be ther − 1 dimensional
homology class represented by∂σi. The addition ofσi

to the filtration will have one of two possible homological
effects:

• If α is nontrivial in Hi−1
r , adding σi kills it so

βr−1(K
i) = βr−1(K

i−1) − 1, while all other Betti
numbers remain unchanged. We say thatσi is aneg-
ative r-simplex.

• If α is already0 in Hi−1
r , there is a chainγ ∈

Cr(K
i−1) such that∂γ = ∂σi. We see then that the

cycleγ+σi represents anr-dimensional class born at
theith level. Thereforeβr(K

i) = βr(K
i−1)+1 and

once again all other Betti numbers are unchanged.
We say thatσi is apositive r-simplex.

If the positiveσi creates a class which is subsequently
destroyed by the addition of the negativeσj , we say in-
formally thatσj kills σi, and pair these two simplices to-
gether. If the addition ofσi creates an essential class, we
leaveσi unpaired.

There is then a one-to-one correspondence between
the pairs(σi, σj) and the nonzero, and thus necessarily
rank one, pair groupsP i,j

r , wherer = dim(σi). Sim-
ilarly, there is a one-to-one correspondence between the
unpairedr-simplices and the rank ofHr(K). The sim-
plicial persistence algorithm, described below, computes
these pairs of simplices and also identifies the unpaired
ones.

Fig. 3 illustrates this correspondence for a filtered tri-
angle. The simplices of the triangle are added in increas-
ing numerical order. The addition of edge4 merges the
component formed by vertex3, so these two simplices are
paired. Similarly, we pair vertex2 and edge5. Edge6 and
triangle7 are paired since the1-cycle created by the edge
is immediately filled in by the triangle. Vertex1, repre-
senting the entire component, goes unpaired, although it
would be paired later by extended persistence if we had
another filtration.
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Figure 4: Filled-in rectangles indicate the non-zero entries.

Boundary Matrix. We form then×n binary incidence
matrixD by settingD[i, j] = 1 iff σi is a codimension-
one face ofσj . For example, the matrix corresponding to
the filtered triangle in Fig. 3 is shown in Fig. 4, although
we omit the vertex-indexed columns, since vertices have
no faces.

The algorithm performs column operations to trans-
formD into a matrix of simpler form; the paired and un-
paired simplices are then read off the simpler matrix.

Reduced Matrices. Let M be an arbitraryn × n bi-
nary matrix. Define the “lowest-one” functionlowM :
{1, 2, . . . , n} → {0, 1, 2, . . . , n} by settinglowM (j) to
the index of the lowest nonzero entry in thejth column,
if it exists. If the column is all0s, setlowM (j) = 0. A
matrixM is said to bereducedif lowM is injective on the
complement of the preimage of0.

Reduction Process and Interpretation. The algorithm
reducesD by performing column operations left-to-right:

for j = 1 to ndo
while ∃j′ < j with low(j′) = low(j) 6= 0 do

add columnj′ to columnj

3
5

2

6

1

4

6

5

4

3

2

1

4 5 6 7

7

Figure 5: The lighter shaded rectangles indicate pairings.

end while
end for.

This produces a reduced matrixR, and the paired sim-
plices are then given directly by the associated function
lowR:

• if lowR(k) = 0, thenσk is a positive simplex. It will
either be paired later or remain unpaired.

• if lowR(j) = i, then we pair the positive simplexσi

with the negative simplexσj .

The reduced matrix for the filtered triangle example is
shown in Fig. 5.

The column operations each correspond to multiplica-
tion by an elementary matrix, and their product produces
a matrixV with R = DV . The columns ofV give addi-
tional information:

• If lowR(k) = 0, then the entries of thekth column of
V give a cycle representing an element in the coset
of classes born whenσk is added.

• If lowR(j) = i, then the entries in thejth column of
V give a representative for one of the classes in the
coset that dies after the addition ofσj .

4 φ - Persistence: Definition and Al-
gorithm

In this section, we introduce the idea ofφ - persistence
for a simplicial complex equipped with an ordering on its
simplices, and give an algorithm for its computation. The
proof of correctness of the algorithm is contained in the
Appendix.
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Figure 6: The interior vertex and incident edges are improper.
All other simplices are proper.

4.1 φ - Homology

Given a simplicial complexK, let φ : K → {0, 1} be
a function on the simplices ofK. If φ(σ) = 1, we say
thatσ is a proper simplex; otherwise, it is improper. Let
P (K) be the set of all proper simplices, andPi(K) the
Z/2Z- vector space with basis the properi-dimensional
simplices.

Allowable Chains. We would like to replace theCi(K)
by thePi(K) but this does not work directly because there
is no guarantee that the boundary of a properi-simplex
will be the sum of proper(i− 1) simplices.

As an example, consider Fig. 6. Suppose that all trian-
gles and the outside edges and vertices are proper, but the
central vertex and all incident edges are improper. Then
triangleE ∈ P2(K) but ∂E 6∈ P1(K), since the bound-
ary ofE contains two improper1-simplices. On the other
hand, the2-chain∆ = A+B+C+E is a sum of proper2-
simplicesand its boundary is also a sum of proper edges;
by adding the triangles together, we have cancelled all im-
proper boundary edges.

This picture illustrates the general definition: a chain
ξ ∈ Ci(K) is allowable if bothξ and∂ξ can be written as
sums of proper simplices. In the above example,E would
not be allowable, but∆ would be. Note that the set of all
allowablei-chains forms aZ/2Z-vector spaceIφCi(K).

Now supposeξ is an allowablei-chain. Since∂∂ξ =
0, ∂ξ is itself an allowable(i − 1)-chain. Therefore,
the boundary maps∂i give a sequence of well-defined
homomorphisms∂i : IφCi(K) → IφCi−1(K) with
∂i ◦ ∂i+1 = 0, so we have a chain complex. Define
IφHi(K) to be theith homology group of this complex.

φ - Persistence. Given a filtration{Ki} of K, and a bi-
nary functionφ, we restrictφ to Ki to defineIφHi

r =
IφHr(K

i). For i < j, the inclusionsKi →֒ Kj induce
maps onφ-homology. Using these maps, we define birth
and death, persistence, and the pair groupsIφP i,j

r in ex-
act analogy with their definitions in the case of standard
homology persistence (3.1). Given another filtration, we
could also define extended persistence in the obvious way.

4.2 Active and Neutral Simplices.

Theφ-persistence algorithm is quite similar in form to the
ordinary persistence algorithm, in that it reduces a bound-
ary matrix until the “lowest-one” function is injective.
The main differences are the interpretation of this lowest-
one function and the initial ordering of the columns and
rows of the boundary matrix. These changes are neces-
sitated by the fact that we can no longer partition the set
of simplices into positive and negative, as we did for or-
dinary homology. Instead, there is a third category, “neu-
tral” , which requires special attention. Before describing
the algorithm, we first address this distinction.

Case Analysis. For a chainγ ∈ Pi(K), let I(γ) be
the set of improper simplices in its boundary. Adding an
improper simplexσ to a simplicial complex has no ef-
fect on itsφ−homology asσ can not form part of an al-
lowable chain. Adding a properσ, however, can change
φ−homology, although it need not. Suppose that the com-
plex so far is calledL and that we add thei-dimensional
σ toL. Then one of three things occurs:

• There existsγ ∈ Pi(L) such thatI(γ) = I(σ). In
this case, the sumα = γ + σ is anallowablechain
since the addition cancels out all improper simplices
along the boundaries ofγ andσ. One of two things
then happens:

1. ∂α was not the boundary of an allowablei-
chain inL, but is inL∪{σ}. This means the ad-
dition of σ lowered the(i− 1)stφ−Betti num-
ber by one. In this case, we callσ negative.

2. ∂α was already the boundary of an allowablei-
chainβ in L. Thenα+β represents a new non-
bounding allowablei-cycle. Theith φ−Betti
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number increases by one and we say thatσ is
positive.

• For eachγ ∈ Pi(L), we haveI(γ) 6= I(σ). In this
case, the addition ofσ cannot create any new allow-
able chains. Allφ−Betti numbers remain the same
and we think ofσ asneutral. Note thatσ may later
aid in the creation of an allowable chain.

Sometimes we will wish to stress only that a particular
simplex is not neutral, without specifying whether it is
positive or negative. In this case, we call the simplexac-
tive.

Example. Referring again to Fig. 6, suppose that we
filter this simplicial complex by first adding all vertices
and edges, and then the triangles withE coming last in the
ordering. Then every triangle other thanE will be neutral.
On the other hand, the setI(E) consists of the pair of its
boundary edges which are incident on the central vertex.
These two edges also formI(γ), whereγ is the sum of all
the other previously-added triangles. The2-chainE + γ
is then allowable, as its boundary, consisting of all the
external edges, is a sum of proper1-simplices. Hence
E is active. Since this boundary was previously a non-
bounding1-cycle,E is in fact negative.

4.3 φ-Persistence Algorithm.

Values. The input to the algorithm is the ordered set
τ1, · · · τm of simplices ofK and the functionφ : K →
{0, 1}.

Re-Ordering. Recall thatP (K), I(K) are the subsets
of proper and improper simplices; assume they are of size
s,m − s, respectively. We reorder the input simplices
so that those inP (K) come first, while otherwise pre-
serving the input ordering. The proper simplices are then
renamedσ1, σ2, . . . , σs, and the improper simplices are
σs+1, σs+2, . . . , σm. We will later need to refer back to
the original ordering when formulating the proof of cor-
rectness for our algorithm. To make this easier, we de-
fine an order-preserving bijectiong on {1, 2, . . . ,m} by
σi = τg(i).

1
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6

4

2

E
8
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A

B
7

C

ECBA

Figure 7: The simplices are added in increasing numerical and
then increasing alphabetical order. The columns are indexed
by proper triangles, while the rows are indexed first by proper
edges, then by improper edges. The horizontal line divides
proper from improper edges.

Reduction Algorithm. Them×s binary matrixD (Fig.
7) is constructed as follows. Thes proper simplices in-
dex the columns, while the rows are indexed first by the
s proper simplices and then by them− s improper ones.
We defineD[i, j] to be1 iff σi is a codimension one face
of σj . We then define the “lowest-one” function and the
concept of areducedmatrix exactly as in SubSec. 3.3; we
also use an identical reduction procedure.

The part of theD matrix corresponding to the triangle-
indexed columns for the complex in Fig. 6 is shown in
Fig. 7.

Interpretation and Pairings The algorithm above pro-
duces a reducedm × s matrixR. We read the pairings
from lowR as follows:

• if lowR(j) = 0, thenσj is active and positive.

• if lowR(j) = i ≤ s, thenσj is active, negative, and
paired withσi.

• if lowR(j) = k > s, thenσj is neutral.

Intuition. Consider the original simplex ordering and
imagine adding one simplex at a time in sequence. An
allowablechain, whether it is a cycle or not, must neces-
sarily be a sum ofpropersimplices. Hence the addition of
animpropersimplex can neither create an allowable cycle
nor destroy one via an allowable chain. For this reason,
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Figure 8: A lowest rectangle must beabovethe horizontal line
in order to give a pairing.

we imagine that we are adding only the proper simplices
in sequence and we index the columns accordingly. How-
ever, the boundary of a proper simplexσ need not itself
consist of a sum of proper simplices. In this case, the
simplex is not, by itself, an allowable chain. This does
not mean thatσ is neutral, since we might hope to add
older proper simplices toσ in an attempt to cancel off the
improper simplices in its boundary. We include the im-
proper simplices at the bottom of the row listing and sep-
arate them from the proper rows by a horizontal line. The
cancellation of the improper simplices along the bound-
ary of σ raises the lowest one in theσ−indexed column;
σ will create an allowable chain if and only if this lowest
one ends up above the horizontal line.

For example, consider Fig. 8, which shows the reduced
matrix from the input matrix in Fig. 7. The only lowest-
one above the horizontal line is in row6 of columnE.
This illustrates the fact that triangleE created an allow-
able 2-chain whose boundary is the1-cycle created by
edge6.

5 Stratified Spaces

As stated earlier, the main motivating example ofφ-
persistence is persistent intersection homology. In this
section, we give a description of topologically stratified
spaces, the spaces on which intersection homology theory
is most naturally defined. These objects come with many
different definitions (for a survey, see [21]). We give the
one that works most naturally with intersection homology
below.

Intuitively, a stratified space is a topological space de-
composed into manifold pieces of possibly different di-
mensions, which “fit together nicely.” More precisely,

Definition. A d-dimensional topologically stratified
spaceis a topological spaceX ⊂ R

n together with a de-
scending chain of closed subsets:

X = Xd ⊇ Xd−1 ⊇ Xd−2 ⊇

. . . X1 ⊇ X0 ⊇ X−1 = ∅

so thatXd−Xd−1 is dense inX and so that the following
condition is satisfied:
For eachx ∈ Xi −Xi−1 there is a stratified spaceVx

Vx = Vd ⊇ . . . ⊇ Vi = {point}

whereVk − Vk−1 has dimensioni− k, and a map

ψx : Bi × Vd → X

such thatBi × Vk maps PL-homeomorphically onto a
closed neighborhood ofx in Xk, for all k ≥ i. HereBi is
a closedi-dimensional ball.

A few remarks on this definition may help to clarify.

1. By takingk = i in the above condition, we see that
Xi −Xi−1 must be a (possibly empty, possibly dis-
connected)i-manifold. We denote this subspaceSi

and call it theith stratum ofX. The connected com-
ponents of the strata are called pieces. The union of
lower strataXd−1 is also calledΣ, the “singular set”
of X.

2. The existence ofψ in the above definition is often
referred to as “local normal triviality”; indeed, the
spaceVx in the above condition may be thought of
as a “normal slice” atx ∈ Si. To make this more
precise, letN be a subspace ofX which is trans-
verse to each stratum and intersectsSi in the single
point x, and letBδ be a small ball inX centered
at x. ThenVx will be homeomorphic toN ∩ Bδ,
which we denote byNx. One can show([20]) that
the homeomorphism type of the normal sliceNx de-
pends neither on choice ofδ nor ofN , nor indeed on
the choice ofxwithin a particular piece ofSi. Hence
the pieces, themselves manifolds, fit uniformly into
the larger space. An example of this construction is
shown in Fig. 9.
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Figure 9: A stratified space with more than one singular stratum:
the normal slices atp ∈ S0 and aty ∈ S1 are highlighted.

By astratified simplicial complex, we will mean a simpli-
cial complexK which triangulatesX so that all theXi are
subcomplexes. Finally, by astratified subspaceY of X,
we will mean a closed subspaceY ⊆ X which is itself a
stratified space under the stratification inherited from that
of X. This means that theith strata ofY is Si ∩ Y . One
way to ensure this is to demand thatY intersect eachSi

transversely. For example, the normal slice at a point is
a stratified subspace. WhenY is also a subcomplex, we
call it astratified subcomplex.

Example: Pinched Torus with Disc As a first exam-
ple, letY be the example drawn in Fig. 9. It is a torus
which has had one of its boundary circles pinched to a
point (which we’ll callp) with a disc stretched across the
hole. Let us call the boundary circle of the discC.

If we removeC from Y , we obtain the disconnected2-
manifoldS2. Note thatC itself is a one-manifold. How-
ever, not all points onC are singularities of the same kind.
If y ∈ C, y 6= p, theny has a neighborhood homeomor-
phic to three sheets glued together along a line; in terms
of the definition, this neighborhood is the product of a1-
ball in C and a cone on three points, one from the disc
and two from the torus. On the other hand,p has no such
neighborhood; in fact all of its sufficiently small neigh-
borhoods consist of a cone on two circles (in the torus)
joined by a line (in the disc). Hence the “local normal
triviality” condition demands that we placep in its own
individual stratum, leading to the following stratification
of X:

Y = Y2 ⊇ Y1 = C ⊇ Y0 = {p}.

Example: Suspended Torus. We include this next ex-
ample so that we may later use it to illustrate the definition
of intersection homology. LetΣT denote the suspended
torus, defined to be the result of collapsing each end of
the productT × [−1, 1] to a point. This space does not
embed inR

3, so we picture it inR4 as the union of two
cones. The middle sectionT × 0 is the usual embedding
of the torus inR3. The cone pointsa andb are the points
(0, 0, 0,±1). The cones are then the collection of straight
line segments inR4 from the torus to the cone points.ΣT
is a three-dimensional stratified space, with stratification:

ΣT = X3 ⊇ X2 = X1 = X0 = {a, b}.

We now compute the homology ofΣT . SinceΣT is
connected, we haveβ0 = 1. Now T itself had two non-
bounding one-cycles, represented by the two boundary
circlesC1, C2. Within ΣT , these cycles become bound-
aries: for example,C1 bounds the coneC1∗a. Thus,β1 =
0. On the other hand, we also see thatC1 = ∂(C1 ∗ b).
Thus, we obtain a2-cycle, represented byC1 ∗a+C1 ∗ b,
which we will denote byΣC1. Similarly, ΣC2 is a 2-
cycle, and we findβ2 = 2. Finally,β3 = 1, a three-cycle
formed by suspending the fundamental2-cycle ofT .

Note that Poincaré Duality fails here, as the Betti num-
bers in complementary dimensions are not even equal.

6 Intersection Homology

In this section, we first give a definition of the intersection
homology groups for a stratified simplicial complex. We
then compute these groups for the two stratified spaces
above: the suspended torus and the pinched torus with at-
tached disc. As promised, intersection homology will be
an example ofφ−homology; the key lies in a topologi-
cally meaningful definition ofφ. We then give a quick
discussion of the effect that choice of stratification and/or
triangulation can have on the intersection homology of a
space. The section concludes with the definition of inter-
section homology persistence.

6.1 Definition

Perversities. A perversityis a sequence of integers̄p =
(p1, p2, . . . pd). We impose no restrictions on these inte-
gers, although later it will become apparent that the re-

10



striction−1 ≤ pk ≤ k − 1 will still in fact lead to all
possible intersection homology groups. We use these per-
versities to provide a measure of how much intersection
between simplices and lower-dimensional strata we will
accept.

The top perversity is̄t = (−1, 0, 1, . . . , d − 2). Two
perversities̄p, q̄ are calleddual if p̄+ q̄ = t̄.

Proper Simplices and Intersection Homology Groups.
Given a stratified spaceX, we choose a triangulationK
to get a stratified simplicial complex. Ani-simplexσ in
K is said to bēp-proper if the following condition holds
for all k = 0, . . . , d:

dim(σ̄ ∩Xd−k) ≤ i− k + pk

whereσ̄ denotes the closure of the open simplexσ. Here
we are intentionally confusingσ andσ̄ with their underly-
ing topological spaces. The intuition behind this inequal-
ity is as follows: if ani-dimensional subspace intersects
a codim-k subspacetransversely, the dimension of the in-
tersection will bei − k. A non-transverse intersection
will result in a higher dimension. Thus, ifpk = 0, we
are requiring that forσ to be proper,̄σ must intersect the
codim-k stratum transversely. Higher values ofpk give
more tolerant intersection conditions.

As we are permitting codimension-one strata, we will
need to work within the relative chain groupCi(K,Σ) =
Ci(K)/Ci(Σ). Thus, ani-chain ξ will be a sum ofi-
simplices which do not lie entirely withinΣ; furthermore,
the boundary∂ξ of this i-chain will be the sum of those
(i − 1)-simplices in the boundary ofξ which also do not
lie entirely within Σ. This distinction will be illustrated
below, when we compute the intersection homology of
the pinched torus with a disc attached.

Theith intersection homology group with perversityp̄,
IpHi(K) is then defined exactly as in Sec. 4, where we
use the perversitȳp to define the required binary function.

Singular Intersection Homology. If X is a stratified
space, we may wish to make reference to its intersection
homology without bothering to triangulate it. This can
be done by considering its singular intersection homology
groups ([22]), defined as follows.

Let σ ∈ Si(X) be a singulari-simplex. This means
thatσ : ∆i → X is a continuous map from the standardi-

simplex intoX. One says thatσ is p̄-proper ifσ−1(Xd−k)
is contained within thei − k + pk skeleton of∆i, for
eachk, and then proceeds exactly as above to define the
singular intersection homology groups.

For any “good” triangulation of a stratified space, the
simplicial intersection homology groups will match up
with the singular ones. We make this notion of “good”
precise below (SubSec 6.2).

Example: Suspended Torus. To illustrate the defini-
tion, we now calculate the intersection homology groups
of the suspended torus using the two perversitiesp̄ =
(−1, 0, 0) and q̄ = (0, 0, 1). Any edge whose closure
contains the codim-three singularitya (or b) cannot be
proper for either perversity, since we this would require
dim(ē ∩ X0) ≤ 1 − 3 + q1 = −1. Thus, no single
point in ΣT is a boundary. On the other hand, any two
vertices in the smooth part ofΣT can be connected via a
path which entirely avoids the two singular points. Hence,
IpH0(ΣT ) = IqH0(ΣT ) = Z/2Z.

The sumξ of all three-simplices in any triangulation of
ΣT necessarily contains the singular points. Ifσ is one
such three-simplex, then from the computationdim(σ̄ ∩
X0) = 0 ≤ 3 − 3 + p3 = 0, we see thatξ is a sum
of proper simplices. Since∂ξ = 0 and thus trivially a
sum of proper simplices,ξ is allowable. Hence we have:
IpH3(ΣT ) = IqH3(ΣT ) = Z/2Z.

In dimensions1 and 2, the two perversities give dif-
ferent answers. For̄p, the 2-simplices which we ob-
tain by coning the boundary circles of the torus to either
one of the singular points are not proper: for example,
dim((C1 ∗ a) ∩X0) = 0 > 2− 3 + p3 = −1. Hence the
boundary circlesC1 andC2 are allowable1-cycles which
are not the boundary of anallowable2-chain, from which
we see thatIpH1(ΣT ) = Z/2Z

⊕
Z/2Z, with basis el-

ements the homology classes ofC1 and ofC2. On the
other hand,IpH2(ΣT ) = 0.

Replacingp3 = 0 with q3 = 1 in the above discus-
sion shows thatIqH1(ΣT ) = 0, while IqH2(ΣT ) =
Z/2Z

⊕
Z/2Z, with basis elements the homology classes

of ΣC1 andΣC2.

Example: Pinched Torus with Disc. Let Y be the
pinched torus with disc stretched across the hole (see
Fig. 9). Consider the two perversities̄p = (−1, 0) and
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q̄ = (0, 0).
For the first perversity, there are two distinct compo-

nents, represented by points on the interior of the torus
and the disc, respectively. Note that the two points are not
p̄−homologous, as any1-chain which crosses the bound-
ary of the disc will necessarily contain an improper edge.
HenceIpH0(Y ) = Z/2Z

⊕
Z/2Z. In dimensions one

and two, there are nōp-cycles.
For the latter perversity, there are no components: any

point on Y can be connected toΣ by an allowable1-
chain. Since we are computing modΣ, this point becomes
a boundary. There is also nōq-homology in dimension
one. On the other hand, the groupIqH2(Y ) has rank two.
As representatives, one may take the attached disc (whose
boundary is inΣ), and the pinched torus without the disc,
which has empty boundary.

Duality The last two examples illustrate the following
theorem ([18]):

2 (Poincaŕe Duality) Let X be ad-dimensional strati-
fied space with̄p, q̄ dual perversities. Then, for allr, there
is a perfect pairing given by intersection of chain repre-
sentatives:

IpHr(X)⊗ IqHd−r(X)→ Z/2Z

In the suspended torus example, note that the chains
C1 andΣC2 intersect in precisely one point; the former
represents a one-dimensionalp̄-class, the latter a two-
dimensional̄q-class. We also have:

3 (Lefschetz Duality) LetX be ad-dimensional strati-
fied space with boundary∂X and letp̄, q̄ be dual perver-
sities. Then, for allr, there is a perfect pairing:

IpHr(X)⊗ IqHd−r(X, ∂X)→ Z/2Z

6.2 Stratification and Triangulation Effects

Stratification Dependence. A natural question is
whether the intersection homology groups of a stratified
spaceX depend on the stratification. Certain assump-
tions ([18]) on both space and perversity guarantee inde-
pendence. Specifically, one requires thatSd−1 = ∅ and

s
v

Figure 10: A wedge of two circles.

Figure 11: A two-sphere, stratified to have four isolated singular
points, with a non-flaglike triangulation.

pi ≤ pi+1 ≤ pi + 1. In our more general context, how-
ever, the intersection homology groups will depend on the
stratification.

As an example, consider the wedge of two circles,X,
shown in Fig. 10. The coarsest stratification ofX sim-
ply places the wedge points into the 0-stratum. If we
compute using perversitȳp = (−1), we find two com-
ponents, since any allowable edge must excludes. On the
other hand, nothing stops us from placing boths and some
smooth pointv in into the0-stratum. This choice creates
an extrap̄-component.

Triangulation Dependence. In addition to stratifica-
tion, intersection homology groups also depend on the
choice of triangulation. For example, suppose thatX
is a two-sphere stratified to have four isolated singular
points. TriangulateX as the boundary of a tetrahedron
with the singular points as vertices (Fig. 11) and attempt
to compute its intersection homology using the perversity
q̄ = (0, 0). Unfortunately, we get a ludicrous answer:
there are no components because there are no allowable
vertices!

On the other hand, if we take the barycentric subdivi-
sion, we create allowable vertices and thus a component.
Hence two triangulations of the same stratified space give
different intersection homology groups.

12



Flaglike Triangulations. Fortunately, dependence on
triangulation is not very strong. A triangulation of a space
X with stratification{Xk} is calledflaglike if for every
simplexσ and everyk, the intersection̄σ ∩Xk is a single
face of σ̄. Note that the triangulation in Fig. 11 is not
flaglike: in fact, all edges violate the condition.

It can be shown ([23]) that simplicial intersection ho-
mology groups, computed using a flaglike triangulation,
are isomorphic to singular intersection homology groups.
Furthermore, the first barycentric subdivision ofany tri-
angulation will always be flaglike.

6.3 Intersection Homology Persistence

Given a stratified space equipped with an ascending and
descending filtration, we define the notions of intersection
homology persistence and extended persistence in exact
analogy to the ordinary homology case. The pair groups
with perversityp̄ are denoted byIpHi,j

r . If the filtrations
come from a functionf , then we useIpDgm(f) to refer
to the associated persistence diagram, and we also make
the obvious adjustments to the notation for the subdia-
grams.

In [12], the authors prove that the persistenthomology
diagramsDgmr(f),Dgmr(g) for two similar functions
are themselves similar, in the sense that the bottleneck
distance between the diagrams is bounded by theL∞ dis-
tance between the functions. Their proof can be adapted,
with only minor notational changes, to give:

4 (IH Diagram Stability) Let f, g be two tame, real-
valued functions on a stratified spaceX. Then for each
dimensionr and each perversitȳp:

dB(IpDgmr(f), IpDgmr(g)) ≤ ||f − g||∞

7 Stratified Morse Example

As stated before, one motivation behind the study of inter-
section homology persistence is to gain information about
an embedded stratified space that would not be obtain-
able using standard homology persistence. Consider the
2-dimensional stratified space in Fig. 2, filtered as before

Figure 12: A portion of a disc (not pictured) is attached along
the dotted line.

Figure 13: There are no allowable1-cycles, as it is forbidden to
touch the one-stratum with an edge

by height in the vertical direction. Recall that standard
persistence did not detect the pointsB andF . On the
other hand, if we compute persistence and extended per-
sistence of intersection homology using this filtration, we
will see it gives more information.

Ascending Past the Critical Points We fix our perver-
sity p̄ = (−1, 0), recall that this choice of perversity for-
bids edges to touch the one-stratum.

At A, a component is born which survives all the way
to the top. AtB (Fig. 12), two new components are born,
one from the disc and one from the portion of the torus cut
off by the one-stratum. This latter component is merged at
pointC, while the former is essential. At the pinch point
D, a component is again born, which dies upon passing
point E (Fig. 13). At pointF (Fig 14), a one-cycle is
born, represented by the circle which forms the boundary
of the sublevel set; note that this circle is not trivial: since
2-simplices cannot touch the one-stratum along an edge,
the chain formed by triangulating the entire sublevel set is
not allowable and hence the boundary circle does not in
fact bound. This one-cycle is subsequently capped off by
the global maximum pointG.

Descending with Relative Intersection Homology
Now we begin the descent, where we quotient out by su-
perlevel sets as we pass each critical point in turn. At
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Figure 14: The circle on top represents a nonzero intersection
homology class.
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Figure 15: Points are labelled by dimension. Circles, squares,
and triangles represent ordinary, relative, and extended pairs, re-
spectively.

pointG, the component represented by the torus becomes
trivial, and so we get the extended pairing ofA with G.
Passing pointF (Fig. 13), two things happen: the compo-
nent represented by the disc becomes trivial, and a relative
one-cycle is born and subsequently killed at pointE. D
andC form a relative pair, as the former creates a relative
one-cycle and the latter kills it.B andA are paired for the
same reason in dimension two.

The results of this analysis are summarized in the per-
sistence diagramIpDgm(f), shown in Fig. 15 along with
the space itself. Note the lack of symmetry in this di-
agram, reflecting the failure of Poincaré duality using a
single perversity, even for intersection homology.

On the other hand, suppose we compute persistence
for the same filtration using the dual perversityq̄ =
(0, 0). Then, for example, there will be an ordinary pair
(f(A), f(B)), representing the component born at the
global minimum which becomes trivial upon first touch-
ing the one-stratum. This pair is dual to the relative2-
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Figure 16: Points are labelled by dimension. Circles, squares,
and triangles represent ordinary, relative, and extended pairs, re-
spectively.

dimensional pair(f(B), f(A)) which we computed in the
p̄-diagram. We omit any further calculations, but the com-
plete diagramIqDgm(f) is shown in Fig. 16. Comparing
this to Fig. 15, we see an obvious symmetry. In the next
section, we explain where this comes from.

8 Duality and Symmetry

In this section, we explain why the diagrams above are
symmetric by proving that a new version of Pair Group
Duality (Res. 1) holds in this context. From this result,
we can derive several other symmetry results for our dia-
grams.

Pair Group Duality Suppose we have ad-dimensional
stratified spaceX endowed with a stratified Morse func-
tion f . Assuming thatf hasn ordered critical points
{t1, . . . , tn}, we define the ascending filtrationAi and
the descending filtrationDn−i as above (SubSec 3.2):
Ai = f−1((−∞, ai] andDn−i = f−1([ai,∞)), where
ai is a regular value withti < ai < ti+1. Assume also
that p̄, q̄ are dual perversities.

For eachi, the spaceAi will itself be ad-dimensional
stratified space with boundary ([20]). Hence, for each di-
mensionr, Lefschetz Duality (3) gives a perfect pairing:

IpHr(Ai)⊗ I
qHd−r(Ai, ∂Ai)→ Z/2Z.

On the other hand,∂Ai = f−1(ai) = ∂Dn−i. Combin-
ing this fact with excision, we find a perfect pairing:
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IpHi
r ⊗ I

qH2n−i
d−r → Z/2Z.

This pairing can be further refined in the following sense.
Suppose that we have āp-classα ∈ IpP i,j

r , soα is born
at level i and dies entering levelj. For each level of its
lifetime, α is paired with some(d − r)-dimensionalq̄-
class. But an inspection of the following diagram:

IpHi−1
r IpHi

r IpHj−1
r IpHj

r

⊗ ⊗ ⊗ ⊗

IqH2n−i+1
d−r IqH2n−i

d−r IqH2n−j+1
d−r IqH2n−j

d−r

Z/2Z Z/2Z Z/2Z Z/2Z

- - -

? ?

�

?

�

?

�

shows that this class must have been born at level2n −
j + 1 and died entering level2n− i+ 1. This proves:

5 (IH Pair Group Duality) For eachr and for0 ≤ i ≤
j ≤ 2n, whenever̄p, q̄ are dual perversities, there is a
perfect pairing:

IpP i,j
r ⊗ I

qP 2n−j+1,2n−i+1
d−r → Z/2Z

Diagram Symmetries The algebraic result above can
be made more concrete in terms of symmetries of persis-
tence diagrams. The proofs are almost identical to those
for ordinary homology found in [11], and we omit them
here.

To state these results, we define three involutions of
the plane: (x, y)T = (y, x), (x, y)R = (−y,−x), and
(x, y)O = (−x,−y). Then, givenf and dual perversities
p̄, q̄ we have:

6 (Diagram Symmetry I)

IpDgmr(f) = [IqDgmd−r(f)]T .

Furthermore,:

• IpOrdr(f) = [IqReld−r(f)]T

• IpRelr(f) = [IqOrdd−r(f)]T

• IpExtr(f) = [IqExtd−r(f)]T

An example of these relations can be in seen in Figs. 15
and 16. On the other hand, suppose we also filter our
space with the function−f . Then we have:

7 (Diagram Symmetry II)

IpOrdr(f) = [IqOrdd−r−1(−f)]R

IpRelr(f) = [IqReld−r+1(−f)]R

IpExtr(f) = [IqExtd−r(−f)]O

Hence if all we care about ispersistenceof classes, rather
than order or dimension, the information gained by the
two filtrations will be identical.

Example. Recall the stratified space in Fig. 2 and let
p̄ = (−1, 0), q̄ = (0, 0). When we calculatedIp-
persistence for the filtration defined by vertical heightf ,
there was an ordinary1-dimensional class born at pointF
which was then capped off at pointG; this corresponds to
the point(f(F ), f(G)) ∈ IpOrd1(f).

Suppose we now computeIq-persistence using the fil-
tration defined by−f . There will then be a component
born atG which dies as soon as we passF because any
point which can be allowably connected to the singular
set will become a boundary when using perversityq̄. In
other words, there will be a point(−f(G),−f(F )) ∈
IqOrd0(−f).

Similarly, the essential̄p-component represented by the
point (f(A), f(G)) ∈ IpExt0(f) is partnered with the
point (−f(A),−f(G)) ∈ IqExt2(−f), which repre-
sents the essentialq̄-void formed by the torus itself.

The complete persistence diagrams for the two func-
tions are shown in Fig. 17.

9 Subdivided Star Filtration

The algorithm given in Sec. 4 computes the intersection
pair groups for a simplicial complex equipped with an or-
dering on its simplices. On the other hand, we also have a
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Figure 17: The diagramsIpDgm(f), IqDgm(−f), in all three
relevant dimensions, are superimposed, with the former dia-
grams in darker shading. Circles, boxes, and triangles indicate
ordinary, relative, and extended points, respectively. Each point
is labelled by dimension.

notion of intersection homology persistence for an actual
stratified space equipped with a height function (see Secs.
7 and 8). In this section, we connect the two concepts. In
fact, we demonstrate that the latter type of persistence can
be approximated, with as much precision as we like, by
the former.

Vertex Ordering. Suppose that we have a simplicial
complexK embedded in Euclidean space and an injec-
tive, real-valued functionh defined on the vertices ofK.
Interpolate to geth : K → R, then order the vertices of
K so thatv < w iff h(v) < h(w). Let h(vi) = ri, pick
someti just larger thanri, and consider the sublevel sets
K≤ti

and superlevel setsK≥ti
. These sets provide as-

cending and descending filtrations of|K|, the topological
realization ofK, and we can compute intersection homol-
ogy persistence along these filtrations.

Simplicial Analogue. We may also filterK in the fol-
lowing manner. LettingK ′ denote the first barycentric
subdivision, and assumingK hasn vertices ordered by
h-value, we set:

K̄i =
⋃

j≤i

s̄t(vj ,K
′) (2)

K̄i consists of the complete star withinK ′ of the first i

original vertices fromK. We give each simplex in̄Ki −
K̄i−1 the valueh(vi), set:

L̄n−i =
⋃

s>i

s̄t(vs,K
′) (3)

and give each simplex in̄Ln−i− L̄n−i−1 the valueh(vi).
These two collections then give ascending and descending
filtrations ofK and we can compute intersection homol-
ogy persistence in the sense of Sec. 4.

For eachi there exist stratum-preserving deformation
retractions betweenK≤ti

andKi, and also betweenK≥ti

andLn−i. These retractions induce intersection homol-
ogy isomorphisms which commute with the homomor-
phisms induced by inclusions along the two sets of as-
cending and descending filtrations. In other words, the
two persistence diagrams will be identical.

Note also that̄Ki andL̄n−i are stratified subcomplexes
of K. Furthermore, their boundaries are the same, equal
to the full subcomplex ofK ′ spanned by the barycentres
of the simplices inK which are spanned by at least one
vertex lower than or equal tovi and at least one vertex
higher thanvi. Hence the duality results derived above
also go through perfectly in this context.

Persistence Diagram Approximation Given a strati-
fied spaceX along with a functionf , we might wish to
actually compute the persistence diagrams associated to
the filtrations provided byf . The discussion above shows
us that we can by choosing a triangulationK of X and
definingf̃ via linear approximation from the values off
on the vertices ofK. Then we compute persistence using
the subdivided star filtrations above. By choosing a fine
enough triangulationK ofX, we can make the functionf
andf̃ arbitrarily close. And so by Diagram Stability (4),
the persistence diagrams for the two functions will also be
arbitrarily close.

10 Discussion

We list here some further thoughts and questions:

• At the present moment,φ-persistence exists only as a
convenient abstraction that helps to explain and com-
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pute the more concrete notion of intersection homol-
ogy persistence. Are there examples of simplex re-
moval decision procedures, other than those derived
from a perversity, that might be of interest?

• The assumption that the top stratum be dense inX
seems to be necessary for the definition of intersec-
tion homology. On the other hand, this seems an un-
fortunate requirement, as one might easily imagine
datasets where this might not hold. Can the theory
be redeveloped to deal with this issue?

• Given a dataset, one might envision fitting to it a
family of stratified spaces, with a changing stratifica-
tion, each based on different uncertainty levels. Al-
though the structure of this family is not yet clear, it
seems likely that intersection homology might aid in
its analysis: if the family can be structured in such a
way so that intersection homology homomorphisms
are induced between different spaces in the family,
then we could do persistence along these maps. This
fits in with the basic governing paradigm of persis-
tence: if there is a parameter of whose value you
are not certain, don’t fix the parameter. Rather, vary
the parameter, compute persistence in some way, and
look for islands of stability.
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Appendix: Proof of Correctness

Here we give the proof that theφ-persistence algorithm is
correct. We start by providing a precise statement of cor-
rectness. Recall that the bijectiong tracks the reordering
of the input simplices into proper and improper sets.

8 (Correctness ofφ-persistence Algorithm) For 0 <
i, j ≤ s, (σi, σj) is computed by our algorithm iff

IφP
g(i),g(j)
r = Z/2Z, wherer = dim(σi).

To prove this statement we will construct another re-
duction algorithm forD for which the associatedlow-
function clearly and provably computes the correct per-
sistence pairs. We then employ the Pairing Uniqueness
Lemma ([13]) which states that any suchlow function
must depend only onD and hence that our given al-
gorithm computes the same pairs as the provably cor-
rect ones. This new reduction algorithm is built on two
proceduresMake − Activei and Pair − Simplices.
Make − Activei decides if a given simplexσi is or is
not active. The resulting active simplices are then input
into thePair−Simplices procedure. We will prove that
the analogous statement to Statement 8 above is true for
this new algorithm.

Before giving these procedures, we first define a func-
tion n : Pi(K) → {s + 1, s + 2, . . . ,m} via n(γ) = i
whereσi is the youngest (most recently added) simplex
in I(γ). If I(γ) = ∅, which means thatγ is an allowable
chain, we setn(γ) = 0.

Finding Neutral Simplices. Here is pseudocode for the
recursive procedureMake−Activei:

γi = σi

for j = 1 to i− 1 do
γj =Make−Activej(σj)

end for
while ∃j < i such thatn(γj) = n(γi) do

γi ← γj + γi

end while
Return γi

For eachi, we define

a(σi) = ∂(γi) (4)

Notice thatσi is neutral iffn(a(σi)) 6= 0. If σi is indeed
neutral, we definelowM (σi) = n(a(σi)). Otherwise, we
leavelowM (σi) undefined for the moment.

The rest of the proof now very closely follows the proof
of correctness for the usual homology persistence algo-
rithm given in [16]. As a few details are different, we will
write a full description here, while maintaining some of
the notation found therein.

Basis Construction. Recall (see e.g. [14]) that for each
positiver-simplexσi there is anr-cycleci which contains
σi as its only positive simplex. Lethi denote the homol-
ogy class ofci. Now supposeα ∈ IqH

g(i)
r . Thenα was

born at some levelg(k) ≤ g(i). Henceα can be written
as a sum

α = hk +
∑

j∈I(α)

hj , (5)

where I(α) is a set of indices all less thani. In
other words, for some subset of indicesI(i) taken
from {1, 2, . . . i}, the classeshj , or more precisely

f
g(j),g(i)
r (hj), for j ∈ I(i), form a basis for the intersec-

tion homology groupIqH
g(i)
r . Using this fact, we define a

function,y : IqH
g(i)
r → {1, 2, . . . i} by y(α) = k, where

k is defined as in Eqn. 5.

Pair-Simplices Algorithm. We now give an algorithm
which pairs some of the active simplices. These pairings
will complete the definition of thelowM function, the val-
ues of which have already been given for the neutral sim-
plices. The algorithm maintains, for eachr andk, a list
P k

r of the paired simplices at stagek of the algorithm.
Here is the pseudocode:

∀r, P 0
r = ∅

for j = 1 to s do
if σj non-negativethen
∀r, P

g(j)
r = P

g(j−1)
r

else
i = y([a(σj)])
k = dim(σj)

P
g(j)
k = P

g(j−1)
k ∪ {(σi, σj)}

∀r 6= k, P
g(j)
r = P

g(j−1)
r

end if
end for
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We then finish the definition oflowM by defining
lowM (j) = i iff (σi, σj) is produced byPair −
Simplices.

Matrix Formulation. As with our original algorithm,
the procedures above can all be accomplished by perform-
ing column operations on the original boundary matrixD,
or alternatively, by multiplying on the right by a product
of elementary matricesV .

Let us call a simplexσk potentially neutraliff I(σ) 6=
∅. TheMake − Activek procedure manifests itself by
adding columns from the left which correspond to ac-
tually neutral simplices, to columnj. If the procedure
succeeds in raising the lowest one in columnj above the
proper/improper demarcation line, thenσj is in fact ac-
tive. Otherwise, it is actually neutral and we never use its
corresponding column again in the reduction. The rest of
the algorithm just completes the reduction of the matrix,
starting all over again from left to right, but this time only
employing columns corresponding to active simplices.

At the end of the process, we have a reduced matrix
M and a corresponding lowest one functionlowM . If
lowM (j) = i > s, then columnj of V stores a chain of
neutral simplices; in other words, a non-allowable chain.
If columnj ofM is empty, then columnj of V stores a cy-
cle consisting of positive, negative, and neutral simplices;
this cycle is precisely the representative of the basis ele-
menthj described above. Finally, iflowM (j) = i ≤ s,
then columnj of V stores an allowable chain which de-
stroys the class created byσi. Hence we have one matrix
D and two reduced matricesR,M which result from per-
forming column operations onD. By the Pairing Unique-
ness Lemma ([13]) then, we concludelowM = lowR.

The correctness proof will therefore be complete after
we prove the following, which is the analogue to State-
ment 8 for our algorithm.

9 Let r = dim(σi). Then lowM (j) = i < s iff

IqP
g(i),g(j)
r = Z/2Z

PROOF. We prove the forward direction; the other di-
rection is essentially just a restatement of what follows
below. Letci be the cycle containingσi as constructed
above (5), and lethi be its homology class inIqH

g(i)
r .

We show thathi is born at levelg(i) and dies at level
g(j):

First, we showhi 6∈ Imfg(i−1),g(i)
r : Suppose it was,

then ∃α ∈ IpH
g(i−1)
r such thatfg(i−1),g(i)

r (α) = hi.
Writing α as in (5), we arrive at a contradiction.

Next we showfg(i),g(j)
r (hi) ∈ Imfg(i−1),g(j)

r : By con-
struction,y(a(σj)) = i. This means that, dropping the
maps induced by inclusion for the moment, we can write:

a(σj) = ci +
∑

k∈I

ck (6)

whereI is some set of indices less thani. We then pass
this equation to homology and push it forward to level
g(j), where[a(σj)] = 0, since by construction (see (4)),
a(σj) = ∂(γj).Hence at levelg(j), we see that the image
of hi is equal to the image of the sum of classes on the
right. But all of these classes existed at levels lower than
g(i). Hencehi died at least by levelg(j).

Finally, we show that f
g(i),g(j−1)
r (hi) 6∈

Imfg(i−1),g(j−1)
r . Suppose it were. Then at level

g(j − 1), the image ofhi is homologous to the image of
a class coming from before levelg(i). Hence, using the
basis defined in (5) and dropping maps, we can find an
allowable chainη ∈ IqH

g(j−1)
r+1 such that

∂(η) = ci +
∑

t∈J

ct,

for some set of indices less thani. Notice that∂(η) is
homologous to zero at levelg(j − 1). So we can add this
equation to (6) and pass to homology to obtain:

[∂(η)] + [a(σj)] = [a(σj)] =
∑

k∈I

hk +
∑

t∈J

ht.

But all the indices on the right hand side are less thani,
and so this contradicts the definition ofy(a(σj)). There-
fore,hi dies at levelg(j).
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