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Abstract are spaces obtained by piecing together manifolds of dif-

ferent dimensions in a controlled and coherent fashion.
The theory of intersection homology was developed to study tige goal of this paper is the incorporation of intersection
singularities of a topologically stratified space. This paper iﬂ'omology into the persistence framework, with several

corp_orates this theory into the already developed_ frame_worktgi)eS of potential applications which we describe below.
persistent homology. We demonstrate that persistent intersec-

tion homology gives useful information about the relationship After defining persistent intersection homology we give
between an embedded stratified space and its singularities. 3ealgorithm for its computation in a simplicial setting.
give, and prove the correctness of, an algorithm for the computhile the full definition and topological meaning of in-
tion of the persistent intersection homology groups of a filterédrsection homology is rather involved, its algebraic de-
simplicial complex equipped with a stratification by subcomscription is quite simple. One defines intersection homol-
plexes. We also d_erive,_from Poi'néabuality, some structural ogy chains by starting with an ordinary simplicial chain
results about persistent intersection homology. complex and removing certain simplices from considera-

tion to obtain a new chain complex, and then one simply
AMS Subject Classifications 55n33, 6s. computes the homology of this chain complex.

Here we will abstract this algebraic process into a defi-
nition of what we callb—homology, where any arbitrarily
chosen binary functiog represents the simplex removal

hdecision procedure. We then defipe-persistence and

Over the last several years, computational topology \S/e an algorithm for its computation. Persistent inter-

grown into a flourishing area. A cornerstone of the Susection homology will then be described as one case of
ject is persistent homology, introduced in [16]. Persisten ay

homology is a method for measuring features of a ﬁlterg)apersistence, but one in which the functipmas an ob-

gy 9 X vigus topological meaning based on the singularity struc-
topological space. The theory has expanded to mclud{euzrie of the space
number of topological tools including Poinéaand Lef- pace.

schetz duality [11], Mayer-Vietoris sequences [10] and A key factabout intersection homology, proven in [18],
Morse Theory [15]. is that it provides PoincérDuality for stratified spaces;

using ordinary homology theory, duality fails. We will use
. . Poincaé Duality to prove a series of symmetry results for
Persistent Intersection Hom_ology. ".] [18], Goresky ersistent intersection homology on a embedded stratified
and MacPherson developed mtgrsecnon homqlogy the B’ace which is filtered by the sublevel sets of a function.
as a tool for the study of stratified spaces. Briefly, theﬁ'ﬁese symmetries closely mirror those held by the usual

*This research was partially supported by the Defense AdhRe- Persistent homology on an embedded and filtereuhi-
search Projects Agency (DARPA) under grant HR0011-050700 fold ([11]).

TIST Austria(Institute of Science and Technology Austria), In [1] manifold symmetries were used to define an ele-
Klosterneuburg, Austria.

tDepartments of Mathematics and of Computer Science, and ﬂ‘@t_ion funCt_ion on ?—n embeddédmanifold. The critical
Center for Systems Biology, Duke University, Durham, Northdliaa.  points of this function help to locate important features,
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such as “pockets” and “protrusions” on the manifold. Thersection homology. Sec. 5 discusses the category of

theory has subsequently been used to study protein dadipologically stratified spaces. The intersection homol-

ing in [27]. In an upcoming paper [6], we follow a sim-ogy groups of a stratified space, as well as the concept of

ilar pattern: the symmetry properties for persistent inténtersection homology persistence, are then described in

section homology are used to define a series of elevat®ec. 6. As these concepts are rather involved on a first

functions which will be more sensitive to the singularkeading, we work an extended example in Sec. 7. This

ties of an embeddepdimensional stratified space. Thexample illustrates the Duality and Symmetry properties

most immediate application envisioned is in the study ehjoyed by intersection homology persistence. We for-

the protein-protein interface surface ([2]). mally describe these properties in Sec. 8. Finally, Sec.
We also expect that persistent intersection homologydescribes how to filter a simplicial complex, via sub-

will play a role in a more ambitious program: the analysi#vided stars, in such a way as to effectively mimic the

of high-dimensional datasets (point clouds). In particintersection homology persistence on an actual stratified

lar, in certain cases point clouds appear to be samplespéce.

stratified spaces. Since the study of datasets is plagued by

thecurse of dimensionalitynethods have been develope ) )

to reduce the dimension of the dataset. We can think®f Results and Relation to Prior

this as searching for dependency among variables, thereby Work

recognizing that the dataset is really a noisy version of

a smaller dlm_en5|onal manlfold._ This process is call 11 persistence.

manifold learning(for some techniques, see, for example

[3] and [26]). Implicit in most of this work is the assumpThe history of persistence is surveyed in [14]. Versions of

tion that the dataset lies on a manifold, often a hyperplapersistence emerged independently in [17], [7], [25] and

and therefore that the dimensionality of the dependencéli]. Later work on the theory and some of its applica-

constant. Of course it is well known in the manifold learrtions can be found in e.g. [12], [11], [9], [10] and [8]..

ing community that this is not true in general, but so far

there are no formal methods for discovering the structLJée2

of the dimension changes that may occur. )

Local homology groups are a traditional algebraic todhe intersection homology groups of a triangulated topo-
for analyzing stratified spaces; briefly, they provide a hipgically stratified spac& were first defined by Goresky
mological description of the neighborhood of a (possind MacPherson in [18]. The same authors gave a differ-
bly) singular point on the space. A persistent version eft definition using sheaf theory in [19], while King put
these groups was defined in [5] in order to infer the poe theory into a singular chain context in [22]. Our ver-
sible stratifications of the underlying spaces from whidion of intersection homology differs slightly from those
the dataset might be sampled. Persistent intersection &ibeve, for reasons that we now briefly discuss.
mology aides this analysis since intersection homologyThe authors in [18] impose the condition that their strat-
groups are designed to capture structures of interest4in $fied spaces have no strata of codimension one. Since
gular spaces. their primary application was to complex algebraic vari-

eties, this was not a troublesome requirement. They also
. . . imposed a condition on perversities (explained below) to
Outline.  In Sec. 3, we recall the definition of persistent,q e that their definition was independent of the choice
homology and briefly review the algorithm for its COMPUs yatification. We, on the other hand, envision applying
tation. We also give an example which shows its limitggs theory to all types of stratified spaces, and hence wish
tions when applied to an embedded stratified space. $8Gnake no assumptions on stratum-codimension. Drop-

4 definesp-persistence and gives an algorithm for its Conﬂ)'lng this assumption has two consequences, however:
putation, although a proof is deferred until the Appendix.

The paper then switches gears into a discussion of int. Poincaé Duality no longer holds.

Intersection Homology.



2. Intersection homology groups are no longer indepdr-a filtration of X by closed subspaces. Suppose further
dent of choice of stratification. thath : {0,...,n} — R is a monotone increasing func-
tion that assigns a height to each level. Fix a dimension
The first problem is easily dealt with by a slight aland letii = H,.(A;;Z/2Z), 0 < i < n. Wheni < j,
teration of the original definition. Instead of workinghe inclusionA; — A; inducesf?’ : H: — HJ, whose
with ordinary chains, we use the relative chain groupsage consists of all homology classes that live at least
C,(X, X), whereX is the singular set oK. As provenin from H: to HJ.
[4], this restores PoincarDuality. The second problem, For a particular clasa we define its (ordinarypersis-
on the other hand, is not a problem at all but a feature thatceto be the difference between the height values of

we desire since our goal is to apply the theory developggl pirth and death. Specifically is born at A; if o €
here to point cloud data where the stratification is in fagt _ i, pi—1. anddiesat A; if f77~1(a) & im fi=17-1

the very structure that we seek. but fi/(a) € im fi='J. The persistenceof « is then
|h(5) = h(i)]-
2.3 Results. The classes that are born at stagend die at stagé

form thepair group
The main results of this paper are the following.
sy fii—1 j—1,5
¢ The definition ofp-persistence (with persistent inter- pii = — frlj _ pkef f _ lj 1)
section homology as its main example), and an algo- im fr~ 77 Nker fi7 7
rithm for its computation.

Extended Persistence A class that is born at some level
e Duality and Diagram Symmetry results for intersegng never dies is called agssential class Essential
tion homology. classes represent the actual homology of the space and
are not paired by ordinary persistence. But there are geo-
metric reasons that we might wish to assign them a persis-
tence, and we can do this when we have a second filtration
of X by closed subspaces:

e The Subdivided Star Filtration.

3 Persistence

We begin this section by reviewing the definitions of ordi- @=DpcDic...cDn=X

nary and extended persistent homology for a topologiagt ascend using! and descend usinfp. Specifically,
space equipped with two filtrations by closed subspacgst H»t/ = H,.(X, D;) for 0 < j < n and use the
We then present two examples: a one-dimensional mafthowing sequence to extend the notions of birth, death,
fold and a two-dimensional stratified space, each filterggrsistence, and pair group.

by the sublevel and superlevel sets of a height function.

The latter example motivates our extension of the theory

to persistent intersection homology. Along the way, we 0=H’ - H' —...— H"—

define the persistence diagram of a function and its sub- HrHL L gnt2 g

diagrams. The section concludes with a brief description " " "

of the persistence algorithm ([16]). Since the sequence is bracketed by zero groups, all classes

born must eventually die. A class whose birth and death
occurs during the top half of the sequence is called an

3.1 Definition of Persistence. . . .
ordinary classwhile a class whose birth and death occurs

Suppose thak is a topological space and that during the bottom half is called elative class Finally,
a class whose birth and death straddles both halves of the
G=AyCA C...CA,_1CA, =X sequence is aextended class



one.

Persistence Diagrams and Subdiagrams Both ordi-
A nary and extended persistence pairs can be encoded com-
pactly in a persistence diagram. For each nonzero basis

L0 element of a pair group, we locate the critical point that
.0 L created the class and the critical point that destroyed it.
o 1 These two points are paired together, and we plot their

height values as:,y coordinates in the plane. For ex-
ample, the ordinary pair represented By is plotted
) _ _ ) _ _ as the point(f(B), f(F)), while the extended pair that
Figure 1: A manifold with a height function, along with the ex- %asures the essential cycle gives the p@itE), £(A)).

tended persistence diagram. In the diagram, points are labe%e diagram for this example is shown on the right in Fi
by dimension. Circles, squares, and triangles represent ordinl Y, 9 P 9 9.

relative, and extended pairs, respectively. . . . .
P P Y In general, the persistence diagram associated to the fil-

trations given by a height functiofis denotedDgm/( f),
3.2 Height Function Examples. with Dgm,.(f) being the restriction to dimension.

. _— . Within each persistence diagram are overlaid several im-
To illustrate the definitions above, as well as to provide

ial iustification for the devel t of int " ortant sub-diagrams which we label with the symbols
partia’ justitication for the development ot Intersectio rd,(f), Rel,.(f), Ext.(f) to stand for, respectively, or-
homology persistence, we briefly present two exampl

Along the way, we will see a type of duality for pair%l?nary, relative, and extended pairs in dimension

groups which holds as long a§ is a manifold, but can

fail otherwise. Pair Group Duality The reader will note the obvious

symmetry in the persistence diagram above. This holds
becauseX is a manifold and is a consequence of Poiécar

One-Manifold. Consider the spac#, topologically a Déjality. If we assume that our functigh hasn critical

circle, but embedded in the plane as shown in Fig. 1. Lg : : . :
o r . o ints and thatX is a d-manifold, then duality can be
f + X — R measure height in the vertical direction. W xpressed in the following way ([11]).

filter X by the sublevel sets of, X, = f~!((—o0,a)),
and the superlevel sef6® = f~([a, o0)). 1 (Pair Group Duality) For0 <i < j < 2n,0<r <

As one may easily see, the topology of these sets Wjllintersection of homology classes induces a perfect pair-
only change when we pass one of the critical points Ig;

beled in Fig. 1, a general fact from Morse Theory ([24]).

Interleaving regular values, < f(A) < a1 < f(B) < ij 2n—j+12n—i+l _,

... < f(F) < ag, we defined; = X,, andD; = X%-i, B e Fis, Z/2z

Moving up along the ascending filtration, a component is

born at each of the pointd, B andC. The component

born atC dies as we pass poif?, while the one born at Stratified Spaces. Next consider the spacg shown in

B dies atE. Finally, at pointF’, an essential one-cycleFig. 2. Topologically,X consists of a pinched torus with

is born. Descending, the essential component both at disc attached. This disc, not pictured, is attached along

become trivial passing’, sinceH, (X, F) is trivial. Rel- the dotted circle drawn passing through poiBtsD and

ative one-cycles born d and D die atB andC, respec- F. X is an example of a-dimensional stratified space, an

tively. Finally the essential one-cycle becomes trivial abject described in greater detail in Sec. 5. Imagine that

A. the function f measures height in the vertical direction
In terms of Equation 1, the nonzero pair groups aamd that we filterX by sublevel and superlevel sets as

Py PR PRt PPt pEt and P!, Each has rank before.

4



while ensuring that a simplex precedes all of its cofaces in
the ordering. The height values coming from the function
h are maintained, and so the reordering does not affect the
D persistence values defined above.

Positive and Negative Simplices. SupposeK hasn
A simplicesoy, . .., 0, with K = K~1 U {0;}. Fix ani
and assume difa;) = r. Leta be ther — 1 dimensional
homology class represented by;. The addition ofo;
Figure 2: A disc (not pictured) is attached along the drawg the filtration will have one of two possible homological
curve. effects:

. _ . e If « is nontrivial in Hi~!, addingo; Kills it so
Although a rigorous argument requires Stratified Morse Br_1(K?) = B._1(K*~1) — 1, while all other Betti

Theory (_[20]), it should be clear that the only po_ssible numbers remain unchanged. We say thas aneg-
homologlcal chan_ges_ occur upon passing the points la-  tive r-simplex.

beled with letters in Fig. 2. Actually, nothing whatsoever

happens at the poinB since the sublevel set just after o If o is already0 in H;~', there is a chainy ¢
f(B) deformation retracts onto the sublevel set just be- C.(K*~!) such thaby = do;. We see then that the
fore it. Similarly, nothing happens upon passing the point  cycley+o; represents an-dimensional class born at
F. This means that persistent homology does not mea- theith level. Therefores, (K*) = 3,.(K*~')+1and
sure the height difference between the minimum of the once again all other Betti numbers are unchanged.
torus and the minimum of the attached disc which is an We say that; is apositive r-simplex.

important pi f information hi nd i . I
portant piece of information about this space and tSIfthe positives; creates a class which is subsequently

singularities. Intersection homology persistence, on tggstroyed by the addition of the negativg, we say in-
other hand, will capture this information, as it is mor : : L
nly ind o snape changes caused b he presenc B8 1, K . sncar ese o splecs o
singularities. Ig ' ired ’ '

. . . : eaveo; unpaired.
Note also that Pair Group Duality fails for this exam- Thgre ispthen a one-to-one correspondence between
ple. This is not SUTpMsIng, since PomedDuallty.does the pairs(o;,0;) and the nonzero, and thus necessarily
not hold for non-manifolds. On the other hand, mterse&ink one, pair group®i, wherer — dim(a,). Sim-

tion homology restores a version of Poinedduality to . .
e . : ilarly, there is a one-to-one correspondence between the
stratified spaces. As we explain below, this means that we 7. S .
. : . unpairedr-simplices and the rank off,.(K). The sim-
can recover a version of Pair Group Duality.

plicial persistence algorithm, described below, computes
these pairs of simplices and also identifies the unpaired
3.3 Algorithm. ones. _ _ _
Fig. 3 illustrates this correspondence for a filtered tri-

We now briefly review the algorithm for the computatioangle. The simplices of the triangle are added in increas-
of the persistent homology pairings on a simplicial conimg numerical order. The addition of edgemerges the
plex K equipped with a filtratiof K} and a height func- component formed by verte so these two simplices are
tion h as above. For the details on the extended pergigired. Similarly, we pair vertexand edges. Edge6 and
tence algorithm for a complex equipped with two filtragriangle7 are paired since thie-cycle created by the edge
tions, we refer the reader to [11]. is immediately filled in by the triangle. Verte repre-

The first step is to refine the input filtration to one isenting the entire component, goes unpaired, although it
which one simplex is added at each level. We do this yould be paired later by extended persistence if we had
ordering the simplices arbitrarily within eadtié — K*~! another filtration.
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Figure 3: The only nonzero pair groups @&g°, P;**, andP{”
45 6 7 Figure 5: The lighter shaded rectangles indicate pairings.
1| B
2
: 'n : u end while
. end for.
4 4 . . .
] : This produces a reduced matri, and the paired sim-
y - , B plices are then given directly by the associated function
6|
lowg:

e if lowgr(k) = 0, thenoy is a positive simplex. It will

either be paired later or remain unpaired.
Figure 4: Filled-in rectangles indicate the non-zero entries.

e if lowg(j) = 4, then we pair the positive simplex
with the negative simplex;.

Boundary Matrix. We form then x n binary incidence ) ) ) )
matrix D by settingD[i, j] = 1 iff o; is a codimension- The reduced matrix for the filtered triangle example is
one face obr;. For example, the matrix corresponding tghown in Fig. 5. _ o
the filtered triangle in Fig. 3 is shown in Fig. 4, although 'N€ column operations each correspond to multiplica-
we omit the vertex-indexed columns, since vertices hal@n Py an elementary matrix, and their product produces
no faces. a matrixV with R = DV. The columns ol give addi-

The algorithm performs column operations to trandona! information:

form D into a matrix of simpler form; the paired and un- o If jowg (k) = 0, then the entries of thth column of
pairEd Simplices are then read off the Simpler matrix. Vv give a Cyc|e representing an element in the coset
of classes born whes, is added.

Reduced Matrices. Let M be an arbitraryn x n bi-
nary matrix. Define the “lowest-one” functidlow,, :
{1,2,...,n} — {0,1,2,...,n} by settinglow,,(j) to
the index of the lowest nonzero entry in thih column,
if it exists. If the column is alDs, setlow,/(j) = 0. A

matrix M is said to beeducedf low), is injective onthe 4 ¢ - Persistence: Definition and Al-
complement of the preimage 0f gorithm

e If lowr(j) = 4, then the entries in thgth column of
V' give a representative for one of the classes in the
coset that dies after the addition®f.

Reduction Process and Interpretation. The algorithm |n this section, we introduce the idea of- persistence
reducesD by performing column operations left-to-rightfor a simplicial complex equipped with an ordering on its

forj=1tondo simplices, and give an algorithm for its computation. The
while 357 < j with low(j") = low(j) # 0 do proof of correctness of the algorithm is contained in the
add columry’ to columnjy Appendix.



¢ - Persistence. Given a filtration{ K*} of K, and a bi-
nary functiong, we restricte to K* to definel?H! =
I?H,.(K%). Fori < j, the inclusionsk® — K7 induce
maps onp-homology. Using these maps, we define birth
and death, persistence, and the pair gralfp’-/ in ex-

act analogy with their definitions in the case of standard
homology persistence (3.1). Given another filtration, we
Figure 6: The interior vertex and incident edges are impropé@uld also define extended persistence in the obvious way.
All other simplices are proper.

4.2 Active and Neutral Simplices.

4.1 ¢ -Homology The¢-persistence algorithm is quite similar in form to the
) o ordinary persistence algorithm, in that it reduces a bound-

Given a simplicial complex, let¢ : K — {0,1} be gry matrix until the “lowest-one” function is injective.

a function on the simplices oK. If ¢(0) = 1, we say The main differences are the interpretation of this lowest-

thato is a proper simplex; otherwise, it is improper. L&gne function and the initial ordering of the columns and

P(K) be the set of all proper simplices, aftl(K) the o5 of the boundary matrix. These changes are neces-

Z/21- vector space with basis the propedimensional gjiated by the fact that we can no longer partition the set

simplices. of simplices into positive and negative, as we did for or-
dinary homology. Instead, there is a third category, “neu-
tral” , which requires special attention. Before descigpin

Allowable Chains. We would like to replace th€;(K) the algorithm, we first address this distinction.

by the P;(K) but this does not work directly because there

is no guarantee that the boundary of a propsimplex Case Analysis. For a chainy € P,(K), let I(7) be

will be the sum of prope@ B 1_) simplices. _ the set of improper simplices in its boundary. Adding an
As an example, consider Fig. 6. Suppose that all trigfsproper simplexs to a simplicial complex has no ef-

gles and the outside edges and vertices are proper, buge on its¢—homology asr can not form part of an al-

central vertex and all incident edges are improper. Thfjaple chain. Adding a proper, however, can change

triangle £ € P»(K) butoE ¢ Py(K), since the bound- 4 _homology, although it need not. Suppose that the com-

ary of I contains two impropet-simplices. On the other pex so far is called. and that we add thedimensional

hand, the-chainA = A+B+C+Eisasumof propet-  ; to 1, Then one of three things occurs:

simplicesandits boundary is also a sum of proper edges;

by adding the triangles together, we have cancelled allim-e There existsy € P;(L) such that/(y) = I(o). In

proper boundary edges. this case, the sum = ~ + o is anallowablechain
This picture illustrates the general definition: a chain  since the addition cancels out all improper simplices

¢ € C;(K) is allowable if botht andd¢ can be written as along the boundaries of ando. One of two things

sums of proper simplices. In the above exampleyould then happens:

not be allowable, bu\ would be. Note that the set of all

allowablei-chains forms & /2Z-vector spacd?C;(K). 1. da was not the boundary of an allowable

chaininL, butisinLU{c}. This means the ad-
dition of o lowered the(i — 1)st ¢—Betti num-
ber by one. In this case, we callnegative

Now suppos€ is an allowable-chain. Since)o¢ =
0, 9¢ is itself an allowable(i — 1)-chain. Therefore,
the boundary map#; give a sequence of well-defined

homomorphisms); : I°C;(K) — I?C;_1(K) with 2. Ja was already the boundary of an allowable
0; o 0;41 = 0, so we have a chain complex. Define chaingin L. Thena+ g represents a new non-
I¢H;(K) to be theith homology group of this complex. bounding allowable-cycle. Theith ¢—Betti



number increases by one and we say tha

positive. ) n
2 |
e For eachy € P;(L), we havel(y) # I(o). In this ) -
case, the addition af cannot create any new allow- ’ o
able chains. Allp—Betti numbers remain the same | =
and we think ofr asneutral. Note thato may later ¢ -
aid in the creation of an allowable chain. ’ = L -

Sometimes we will wish to stress only that a particular
simplex is not neutral, without specifying whether it is

positive or negative. In this case, we call the simpex Figure 7: The simplices are added in increasing numerical and
tive ’ then increasing alphabetical order. The columns are indexed

by proper triangles, while the rows are indexed first by proper
edges, then by improper edges. The horizontal line divides
Example. Referring again to Fig. 6, suppose that we/OPer from improper edges.
filter this simplicial complex by first adding all vertices

and nges, and then thg triangles vﬂtbom_ing lastinthe readuction Algorithm.  Therm x s binary matrixD (Fig.
ordering. Then every triangle other thahwill be neutral. 7) is constructed as follows. Theproper simplices in-
On the other hand, the s&tE) consists of the pair of its yey the columns, while the rows are indexed first by the
boundary edges which are incident on the central Vert?broper simplices and then by the — s improper ones.

These two edges also forhty), wherey is the sum of all e defineD[i, j] to bel iff o, is a codimension one face
the other previously-added triangles. ThehainE +~ ¢ -

. - -1 ;. We then define the “lowest-one” function and the
is then allowable, as its boundary, consisting of all the,,cent of aeducedmatrix exactly as in SubSec. 3.3; we
external edges, is a sum of propesimplices. Hence

- ) > ; i also use an identical reduction procedure.

E is active. Since this boundary was previously & non-pe nart of theh matrix corresponding to the triangle-
boundingl-cycle, £ is in fact negative. indexed columns for the complex in Fig. 6 is shown in
Fig. 7.

4.3 ¢-Persistence Algorithm. _ - .

Interpretation and Pairings The algorithm above pro-
Values. The input to the algorithm is the ordered sefuces a reducedh x s matrix R. We read the pairings
71, -+ T Of sSimplices of K and the functionp : K — from lowp as follows:
{0,1}.

e if lowr(j) = 0, theno; is active and positive.

Re-Ordering. Recall thatP(K), I(K) are the subsets e if lowgr(j) = ¢ < s, theno; is active, negative, and
of proper and improper simplices; assume they are of size paired witho;.

s,m — s, respectively. We reorder the input simplices ) )

so that those inP(K) come first, while otherwise pre- ® if lowr(j) =k > s, theno; is neutral.

serving the input ordering. The proper simplices are then

renameds, o9, ...,0,, and the improper simplices ardntuition. Consider the original simplex ordering and
Os+1,0s+2,---,0m. We will later need to refer back toimagine adding one simplex at a time in sequence. An
the original ordering when formulating the proof of corallowablechain, whether it is a cycle or not, must neces-
rectness for our algorithm. To make this easier, we dwarily be a sum gpropersimplices. Hence the addition of
fine an order-preserving bijectianon {1,2,...,m} by animpropersimplex can neither create an allowable cycle
TP = Ty(i)- nor destroy one via an allowable chain. For this reason,



Intuitively, a stratified space is a topological space de-
composed into manifold pieces of possibly different di-
mensions, which “fit together nicely.” More precisely,

o> o N e

Definition. A d-dimensional topologically stratified
spaceis a topological spac& C R"™ together with a de-

o ~ b w

Figure 8: A lowest rectangle must ladovethe horizontal line
in order to give a pairing.

scending chain of closed subsets:

X=X32X312X4302
. X1D2Xy2X =2

sothatX,; — X4 is dense inX and so that the following
condition is satisfied:

For eachr € X; — X;_ there is a stratified spadé.

we imagine that we are adding only the proper simplices
in sequence and we index the columns accordingly. How:
ever, the boundary of a proper simplexheed not itself
consist of a sum of proper simplices. In this case, the
simplex is not, by itself, an allowable chain. This does

Ve=Vy2... 2V, ={point}

whereV,, — V., has dimension — k, and a map

e : B'xVy— X

not mean that is neutral, since we might hope to ad§Uch thatB® x Vi maps PL-homeomorphically onto a

older proper simplices to in an attempt to cancel off the€/0S€d neighborhood af in Xy,

forall k > i. HereB'is

improper simplices in its boundary. We include the inf: closed-dimensional ball. _
proper simplices at the bottom of the row listing and sep- féw remarks on this definition may help to clarify.

arate them from the proper rows by a horizontal line. Theg
cancellation of the improper simplices along the bound-
ary of o raises the lowest one in the-indexed column;

o will create an allowable chain if and only if this lowest
one ends up above the horizontal line.

For example, consider Fig. 8, which shows the reduced
matrix from the input matrix in Fig. 7. The only lowest-
one above the horizontal line is in rodvof column E.
This illustrates the fact that triangle created an allow-
able 2-chain whose boundary is thiecycle created by
edge6.

5 Stratified Spaces

As stated earlier, the main motivating example ¢pf
persistence is persistent intersection homology. In this
section, we give a description of topologically stratified
spaces, the spaces on which intersection homology theory
is most naturally defined. These objects come with many
different definitions (for a survey, see [21]). We give the
one that works most naturally with intersection homology
below.

By takingk = i in the above condition, we see that
X, — X;_1 must be a (possibly empty, possibly dis-
connected)-manifold. We denote this subspaSg
and call it theith stratum ofX'. The connected com-
ponents of the strata are called pieces. The union of
lower strataX,_; is also called:, the “singular set”

of X.

2. The existence ofy in the above definition is often

referred to as “local normal triviality”; indeed, the
spaceV/, in the above condition may be thought of
as a “normal slice” atr € S;. To make this more
precise, letNV be a subspace ok which is trans-
verse to each stratum and intersegsn the single
point z, and let Bs be a small ball inX centered
atz. ThenV, will be homeomorphic taV N By,
which we denote byV,. One can show([20]) that
the homeomorphism type of the normal sli¥g de-
pends neither on choice éfnor of N, nor indeed on
the choice of: within a particular piece of;. Hence
the pieces, themselves manifolds, fit uniformly into
the larger space. An example of this construction is
shown in Fig. 9.



Example: Suspended Torus. We include this next ex-
ample so that we may later use it to illustrate the definition
of intersection homology. LetT denote the suspended
torus, defined to be the result of collapsing each end of
the productl’ x [—1,1] to a point. This space does not
embed inR?, so we picture it inR* as the union of two
cones. The middle sectidfi x 0 is the usual embedding
of the torus inR3. The cone pointa andb are the points
Figure 9: A st'ratified space with more than one s_ingular stratum7 0,0,+1). The cones are then the collection of straight
the normal slices ai € So and aty € 51 are highlighted. line segments ifk* from the torus to the cone pointST’

is a three-dimensional stratified space, with stratificatio

By astratified simplicial complexve will mean a simpli- Y =X3DX?=X"=X"={q,b}.

cial complexK which triangulatesy so that all theX; are ) )
subcomplexes. Finally, by stratified subspac& of X, e now compute the homology &f7'. SinceXT is

we will mean a closed subspateC X which is itself a Cconnected, we havg, = 1. Now 7' itself had two non-
stratified space under the stratification inherited from tHPunding one-cycles, represented by the two boundary
of X. This means that théh strata ofY is S; N Y. One circlesCy, Co. Within 7', these cycles become bound-
way to ensure this is to demand tHatintersect eacts; aries: forexample(/; bounds the con€’, a. Thus,f; =
transversely. For example, the normal slice at a pointds On the other hand, we also see tgt = 9(Cy  b).

a stratified subspace. Whanis also a subcomplex, weThus, we obtain a-cycle, represented iy, *a + Cy * b,
call it astratified subcomplex which we will denote by>C,. Similarly, XC5 is a 2-

cycle, and we finds, = 2. Finally, 53 = 1, a three-cycle
formed by suspending the fundameritadycle of T".
Note that Poincdr Duality fails here, as the Betti num-

Example: Pinched Torus with Disc As a first exam- : . .
gers in complementary dimensions are not even equal.

ple, letY be the example drawn in Fig. 9. It is a toru
which has had one of its boundary circles pinched to a
point (which we'll callp) with a disc stretched across th§  |ntersection Homology
hole. Let us call the boundary circle of the diSc
If we removeC from Y, we obtain the disconnect@d In this section, we first give a definition of the intersection
manifold S2. Note thatC itself is a one-manifold. How- homology groups for a stratified simplicial complex. We
ever, not all points o’ are singularities of the same kindthen compute these groups for the two stratified spaces
If y € C,y # p, theny has a neighborhood homeomorabove: the suspended torus and the pinched torus with at-
phic to three sheets glued together along a line; in tertashed disc. As promised, intersection homology will be
of the definition, this neighborhood is the product of-a an example oth)—homology; the key lies in a topologi-
ball in C' and a cone on three points, one from the disally meaningful definition ofp. We then give a quick
and two from the torus. On the other hapdas no such discussion of the effect that choice of stratification and/o
neighborhood; in fact all of its sufficiently small neightriangulation can have on the intersection homology of a
borhoods consist of a cone on two circles (in the toruspace. The section concludes with the definition of inter-
joined by a line (in the disc). Hence the “local normaection homology persistence.
triviality” condition demands that we plagein its own
individual stratum, leading to the following stratificatio 6.1 Definition
of X:
Perversities. A perversityis a sequence of integeps=
(p1,p2,.-.pa). We impose no restrictions on these inte-
Y=Y;2Y1=C2Y = {p} gers, although later it will become apparent that the re-

10



striction —1 < p, < k — 1 will still in fact lead to all simplex intoX. One says that is p-proper ifc = (X4_1)
possible intersection homology groups. We use these gereontained within the — k + p;, skeleton ofA?, for
versities to provide a measure of how much intersectieachk, and then proceeds exactly as above to define the
between simplices and lower-dimensional strata we wsiihgular intersection homology groups.

accept. For any “good” triangulation of a stratified space, the
The top perversity i$ = (—1,0,1,...,d — 2). Two simplicial intersection homology groups will match up
perversitiep, g are calleddual if p + 7 = ¢. with the singular ones. We make this notion of “good”

precise below (SubSec 6.2).
Proper Simplices and Intersection Homology Groups.
Given a stratified spack, we choose a triangulation’  Example: Suspended Torus. To illustrate the defini-
to get a stratified simplicial complex. ARrsimplexo in  tion, we now calculate the intersection homology groups
K is said to bep-proper if the following condition holds of the suspended torus using the two perversities:
forallk =0,...,d: (—1,0,0) andg = (0,0,1). Any edge whose closure
contains the codim-three singularity (or b) cannot be
proper for either perversity, since we this would require

wheres denotes the closure of the open simplesHere 4im(é N Xo) < 1 -3 4 ¢ = —1. Thus, no single
we are intentionally confusing anda with their underly- POINtin 7" is a boundary. On the other hand, any two

ing topological spaces. The intuition behind this inequaf€tices in the smooth part i7" can be connected via a
ity is as follows: if ani-dimensional subspace intersectgath which entirely avoids the two singular points. Hence,
a codim# subspacéransverselythe dimension of the in- IPHy(XT) = I'Ho(XT) - Z/_QZ- ) . .
tersection will bei — k. A non-transverse intersection 1€ sum of all three-simplices in any triangulation of
will result in a higher dimension. Thus, jf, = 0, we 3T necessarily contains the singular points.clfs one
are requiring that fo to be properg must intersect the SUch three-simplex, then from the computatim (o N
codim+ stratum transversely. Higher valuesygf give Xo) = 0 < 3 =3 +p3 = 0, we see that is a sum
more tolerant intersection conditions. of proper S|mpI|.ces.. Slngég = 0 and thus trivially a
As we are permitting codimension-one strata, we witi™ Of proper simpliceg; is allowable. Hence we have:
need to work within the relative chain groap (K, x) = "Hs(XT) = I"H3(XT) = Z/2Z. o
Ci(K)/C;(2). Thus, ani-chain¢ will be a sum ofi- In dimensionsl and 2, the two perversities give dif-
simplices which do not lie entirely withili; furthermore, ferent answers. Fop, the 2-simplices which we ob-
the boundany¢ of this i-chain will be the sum of thosetain by coning the boundary circles of the torus to either
(i — 1)-simplices in the boundary @fwhich also do not One of the singular points are not proper: for example,
lie entirely within 2. This distinction will be illustrated dim((C1 *a) N Xo) =0 >2 -3 + p3 = —1. Hence the
below, when we compute the intersection homology Bpundary circle€’; andC; are allowablel-cycles which
the pinched torus with a disc attached. are not the boundary of allowable2-chain, from which
Theith intersection homology group with perversjty We see thal? Hy(3T) = Z/2Z D Z/2Z, with basis el-
IPH;(K) is then defined exactly as in Sec. 4, where vwidnents the homology classes @f and of C’;. On the

use the perversity to define the required binary functionOther hand/? Hy(XT') = 0.
Replacingps = 0 with g3 = 1 in the above discus-

sion shows thatf?H,(X7T) = 0, while [7Hy(XT) =
27. P Z./27Z, with basis elements the homology classes
Cy andX(Cs.

dim(a n Xd—k) <i—k+ pg

Singular Intersection Homology. If X is a stratified
space, we may wish to make reference to its intersecti%
homology without bothering to triangulate it. This caf
be done by considering its singular intersection homology
groups ([22]), defined as follows. Example: Pinched Torus with Disc. Let Y be the

Let o € S;(X) be a singulai-simplex. This means pinched torus with disc stretched across the hole (see
thato : A’ — X is a continuous map from the standard Fig. 9). Consider the two perversitigs= (—1,0) and

11



q= (07 O)

For the first perversity, there are two distinct compo-
nents, represented by points on the interior of the torus
and the disc, respectively. Note that the two points are not
p—homologous, as ani+chain which crosses the bound-
ary of the disc will necessarily contain an improper edge.
Hencel?Hy(Y) = Z/2Z @ Z/27Z. In dimensions one Figure 10: A wedge of two circles.
and two, there are np-cycles.

For the latter perversity, there are no components: any
point onY can be connected t& by an allowablel-
chain. Since we are computing midthis point becomes
a boundary. There is also iphomology in dimension
one. On the other hand, the groiff{»(Y") has rank two.

As representatives, one may take the attached disc (whose
boundary is in2), and the pinched torus without the disc,
which has empty boundary.

<

Figure 11: A two-sphere, stratified to have four isolated singular

) ] _points, with a non-flaglike triangulation.
Duality The last two examples illustrate the following

theorem ([18]):
pi < pir1 < p; + 1. In our more general context, how-
2 (Poincaré Duality) Let X' be ad-dimensional strati- ever, the intersection homology groups will depend on the
fied space withp, ¢ dual perversities. Then, for atl, there  stratification.
is a pgrfect pairing given by intersection of chain repre- aAs an example, consider the wedge of two circl&s,
sentatives: shown in Fig. 10. The coarsest stratificationXfsim-
ply places the wedge pointinto the 0-stratum. If we
I"H.(X)® I"Hy(X) — Z/27 compute using perversity = (—1), we find two com-
ponents, since any allowable edge must exckuden the
In the suspended torus example, note that the cha@ger hand, nothing stops us from placing botind some
Cl and ECQ intersect in precise|y one p0|nt, the forme$m00th pOintU in into theO-stratum. This choice creates
represents a one-dimensionatlass, the latter a two-2an extrap-component.
dimensionalj-class. We also have:

Triangulation Dependence. In addition to stratifica-
tion, intersection homology groups also depend on the
choice of triangulation. For example, suppose that

is a two-sphere stratified to have four isolated singular
points. TriangulateX as the boundary of a tetrahedron
with the singular points as vertices (Fig. 11) and attempt
to compute its intersection homology using the perversity
g = (0,0). Unfortunately, we get a ludicrous answer:
there are no components because there are no allowable
Stratification Dependence. A natural question is vertices!

whether the intersection homology groups of a stratifiedOn the other hand, if we take the barycentric subdivi-
spaceX depend on the stratification. Certain assumpion, we create allowable vertices and thus a component.
tions ([18]) on both space and perversity guarantee indéence two triangulations of the same stratified space give
pendence. Specifically, one requires that; = @ and different intersection homology groups.

3 (Lefschetz Duality) Let X be ad-dimensional strati-
fied space with bounda@X and letp, ¢ be dual perver-
sities. Then, for alf, there is a perfect pairing:

IPH,(X)® I"Hy_(X,0X) — 7)2Z

6.2 Stratification and Triangulation Effects

12



Flaglike Triangulations. Fortunately, dependence on

triangulation is not very strong. A triangulation of a space

X with stratification{ X} } is calledflaglike if for every

simplexo and evenyk, the intersectiom N X}, is a single

face of5. Note that the triangulation in Fig. 11 is nofigure 12: A portion of a disc (not pictured) is attached along

flaglike: in fact, all edges violate the condition. the dotted line.
It can be shown ([23]) that simplicial intersection ho-

mology groups, computed using a flaglike triangulation,

are isomorphic to singular intersection homology groups.

Furthermore, the first barycentric subdivisionasfy tri-

angulation will always be flaglike.

6.3 Intersection Homology Persistence

Given a stratified space equipped with an ascending and

descending filtration, we define the notions of intersectifigure 13: There are no allowablecycles, as it is forbidden to
homology persistence and extended persistence in exX@¢gh the one-stratum with an edge

analogy to the ordinary homology case. The pair groups

with perversityp are denoted by" ;7. If the filtrations by height in the vertical direction. Recall that standard

come from a functiory’, then we usd®Dgm(f) to refermp rsistence did not detect the poirdésand F'. On the
to the associated persistence diagram, and we also 5& &r hand. if we compute persistence and extended per-
the obvious adjustments to the notation for the Subd"é}stence of intersection homology using this filtration, we

grams. will see it gives more information
In [12], the authors prove that the persistnmology 9 '

diagramsDgm,.(f), Dgm,(g) for two similar functions
are themselves similar, in the sense that the bottlenétfcending Past the Critical Points We fix our perver-
distance between the diagrams is bounded by thelis- sity p = (—1,0), recall that this choice of perversity for-

tance between the functions. Their proof can be adaptBi§ls edges to touch the one-stratum.

to the top. AtB (Fig. 12), two new components are born,
4 (IH Diagram Stability) Let f,g be two tame, real- one from the disc and one from the portion of the torus cut
valued functions on a stratified spade Then for each off by the one-stratum. This latter component is merged at
dimension- and each perversity: point C', while the former is essential. At the pinch point
D, a component is again born, which dies upon passing
point E (Fig. 13). At pointF (Fig 14), a one-cycle is
dg(I”Dgm,(f),I" Dgm.(g)) < || — glls born, represented by the circle which forms the boundary
of the sublevel set; note that this circle is not trivial:cgn
2-simplices cannot touch the one-stratum along an edge,
the chain formed by triangulating the entire sublevel set is

7 Stratified Morse Example not allowable and hence the boundary circle does not in
fact bound. This one-cycle is subsequently capped off by

As stated before, one motivation behind the study of intdft& global maximum poin:.

section homology persistence is to gain information about

an embedded stratified space that would not be obtaDescending with Relative Intersection Homology
able using standard homology persistence. Consider Mmv we begin the descent, where we quotient out by su-
2-dimensional stratified space in Fig. 2, filtered as befoperlevel sets as we pass each critical point in turn. At
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Figure 14: The circle on top represents a nonzero intersection
homology class.

Figure 16: Points are labelled by dimension. Circles, squares,
and triangles represent ordinary, relative, and extended pairs, re-
spectively.

dimensional paif f (B), f(A)) which we computed in the
p-diagram. We omit any further calculations, but the com-
plete diagranT? Dgm( f) is shown in Fig. 16. Comparing
this to Fig. 15, we see an obvious symmetry. In the next
section, we explain where this comes from.

Figure 15: Points are labelled by dimension. Circles, squaré, Dua|ity and Symmetry

and triangles represent ordinary, relative, and extended pairs, re-
spectively. In this section, we explain why the diagrams above are
symmetric by proving that a new version of Pair Group

Duality (Res. 1) holds in this context. From this result,

point, the component represented by the torus becom@s ¢4 derive several other symmetry results for our dia-
trivial, and so we get the extended pairing4fwith G. ;.o o

Passing poinf’ (Fig. 13), two things happen: the compo-

nent represented by the disc becomes trivial, and a relatlgve G Dual S haveddi ional
one-cycle is born and subsequently killed at pdint D air Group Duality Uppose we naveadimensiona

andC form a relative pair, as the former creates a relati\%rat'f'ed spaceX’ endowed with a stratified Morse func-

one-cycle and the latter kills i3 and A are paired for the tion f. Assuming thatf hasn ordgred .Cm'(?al points
same reason in dimension two. {t1,...,tn}, we define the ascending filtratioA; and

The results of this analysis are summarized in the péh—e descending filtratiorD,, _; as above (SubSec 3.2):

A P , (g
sistence diagran¥ Dgm( f), shown in Fig. 15 along with " igafre Eﬁafflﬁﬁ}eavcgrf ”: _7< ;. ([alfgs)zj’m\’\éhzlrseo
the space itself. Note the lack of symmetry in this df—l 9 N ol

. . g : . hatp, g are dual perversities.
agram, reflecting the failure of Poin@duality using a . - . .
; . . . For eachi, the spaced; will itself be ad-dimensional
single perversity, even for intersection homology.

On the other hand, suppose we compute persisteﬁggﬂﬁed space with boundary ([20]). Hence, for each di-
for the same filtration using the dual perversity — nsionr, Lefschetz Duality (3) gives a perfect pairing:

(0,0). Then, for example, there will be an ordinary pair - _ q _ _
(f(A), f(B)), representing the component born at the IPH(A3) @ I Har (Ai 0Ai) = Z/22.

global minimum which becomes trivial upon first touchon the other handA; = f~1(a;) = 9D,,_;. Combin-
ing the one-stratum. This pair is dual to the relatdse ing this fact with excision, we find a perfect pairing:
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| | o IPRel,(f) = [I90rdy_,(f)]T
IPHE @ I"H" " — Z/27.

This pairing can be further refined in the following sense.
Suppose that we havepaclassa € IP PiJ, soa is born
at leveli and dies entering level. For each level of its
lifetime, « is paired with somdd — r)-dimensionalg-
class. But an inspection of the following diagram:

o IPExt,(f) = [["Extq_.(f)]”

An example of these relations can be in seen in Figs. 15
and 16. On the other hand, suppose we also filter our
space with the functior- f. Then we have:

7 (Diagram Symmetry 1)
IPH™ —— IPH, — [PH}™ —— IPH] 1P0rd, (f) = [[70rdg—,—1(— )7
f) =

1P Rel,.( [19Relg—ri1 (— )7
® ® ® ® ]

IPEat,(f) = [["Exta_,(—1)]°

T« [« [T o e
i L i L Hence if all we care about ersistencef classes, rather

than order or dimension, the information gained by the
Z/2z Z/22 Z/22 Z/2z two filtrations will be identical.

shows that this class must have been born at [2rel N o
j + 1 and died entering levéln — i + 1. This proves: ~ Example. Recall the stratified space in Fig. 2 and let
p = (-1,0),g = (0,0). When we calculated”-

5 (IH Pair Group Duality) For eachr and for0 < ¢ < persistence for the filtration defined by vertical height
j < 2n, wheneverp, g are dual perversities, there is athere was an ordinari+dimensional class born at poiat

perfect pairing: which was then capped off at poi@t, this corresponds to
N _ _ the point(f(F), f(G)) € IPOrdi(f).
[PPYI @ [P T2t g 07, Suppose we now compufé-persistence using the fil-

tration defined by—f. There will then be a component
born atG which dies as soon as we paBshecause any
_ _ i point which can be allowably connected to the singular
Diagram Symmetries The algebraic result above cayet \will become a boundary when using perversityin
be made more concrete in terms of symmetries of persigner words, there will be a poirt—£(G), — f(F)) €
tence diagrams. The proofs are almost identical to th%rdo(—f).
for ordinary homology found in [11], and we omit them  gimjjarly, the essential-component represented by the
here. _ _ _paint (f(A), f(G)) € IPExty(f) is partnered with the
To state these results, we define three involutions |5’(§int (—f(A),—f(G)) € IExty(—f), which repre-
the plane: (z, v = (), (@,9)" = (—y,—2), and gents the essentiaivoid formed by the torus itself.
(z,y)” = (=, —y). Then, givenf and dual perversities  The complete persistence diagrams for the two func-
p,q we have: tions are shown in Fig. 17.

6 (Diagram Symmetry I)

1P Dgmy (f) = (' Dgma. ()] 9 Subdivided Star Filtration

The algorithm given in Sec. 4 computes the intersection
pair groups for a simplicial complex equipped with an or-
o 1POrd,(f) = [I"Relq_.(f)]* dering on its simplices. On the other hand, we also have a

Furthermore,:
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1 K consists of the complete star with#i’ of the firsti

¢ " original vertices fromK. We give each simplex i —
K'~1 the valueh(v;), set:

x L = st(vs, K') (3)

1. i} s$>1

and give each simplex ih™~% — L"~i~1 the valueh(v;).
These two collections then give ascending and descending
= 2 filtrations of K and we can compute intersection homol-
A2 ogy persistence in the sense of Sec. 4.

For eachi there exist stratum-preserving deformation
retractions betweef <;, and K i and also betweeR >t
and L"~*. These retractions induce intersection homol-
Figure 17: The diagram&” Dgm/(f), I*Dgm(—f), inallthree oqy jsomorphisms which commute with the homomor-
relevan_t dlmen5|ons,_are sgperlmposed, with t_he form_er_dgﬁismf5 induced by inclusions along the two sets of as-
grams in darker shading. Circles, boxes, and triangles indic ending and descending filtrations. In other words, the
ordinary, relative, and extended points, respectively. Each paoin . . . . .
is labelled by dimension. two persistence diagrams will be |de_n_t|cal.

Note also thaf(; andL,,_; are stratified subcomplexes
of K. Furthermore, their boundaries are the same, equal

notion of intersection homology persistence for an actualthe full subcomplex of<’ spanned by the barycentres
stratified space equipped with a height function (see Segkthe simplices inK” which are spanned by at least one
7 and 8). In this section, we connect the two concepts. Vértex lower than or equal to; and at least one vertex
fact, we demonstrate that the latter type of persistence tagher thanv;. Hence the duality results derived above
be approximated, with as much precision as we like, 880 go through perfectly in this context.
the former.

Persistence Diagram Approximation Given a strati-

Vertex Ordering. Suppose that we have a simpliciali€d spaceX along with a functionf, we might wish to
complex X embedded in Euclidean space and an inje@ctually compute the persistence diagrams associated to
tive, real-valued functiom defined on the vertices gt. the filtrations provided by. The discussion above shows
Interpolate to geb : K — R, then order the vertices ofus that we can by choosing a triangulatiinof X' and

K so thatv < w iff h(v) < h(w). Leth(v;) = r;, pick defining f via linear approximation from the values @f
somet; just larger than;, and consider the sublevel set§N the vertices of(’. Then we compute persistence using
K, and superlevel set&-,.. These sets provide asthe subdivided star filtrations above. By choosing a fine
cending and descending filtrations|f|, the topological €nough triangulatior” of X', we can make the functiof

realization off¢, and we can compute intersection homofnd f arbitrarily close. And so by Diagram Stability (4),
ogy persistence along these filtrations. the persistence diagrams for the two functions will also be

arbitrarily close.

Simplicial Analogue. We may also filterK in the fol-
lowing manner. LettingK’ denote the first barycentric]Q) Discussion
subdivision, and assuminfy hasn vertices ordered by

h-value, we set: We list here some further thoughts and questions:
Ki— U st(v;, K') ) e Atthe present momeng-persistence exists only as a
i<i convenient abstraction that helps to explain and com-

16



Acknowledgements The authors would like to thank
Henry King for helpful discussions.
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Appendix: Proof of Correctness Notice thato; is neutral iffn(a(o;)) # 0. If o, is indeed
neutral, we definéow,,(0;) = n(a(o;)). Otherwise, we

Here we give the proof that thepersistence algorithm isleavelow,, (c;) undefined for the moment.

correct. We start by providing a precise statement of cor-The rest of the proof now very closely follows the proof

rectness. Recall that the bijectigriracks the reordering of correctness for the usual homology persistence algo-

of the input simplices into proper and improper sets.  rithm given in [16]. As a few details are different, we will
write a full description here, while maintaining some of

8 (Correctness of¢-persistence Algorithm) For 0 < the notation found therein.

i,j < s, (04,04) is computed by our algorithm iff

1pgel) — Z./27, wherer = dim(o;). Basis Construction. Recall (see e.g. [14]) that for each
positiver-simplexo; there is an-cyclec; which contains
To prove this statement we will construct another reg; as its only positive simplex. Lét; denote the homol-
ductipn algorithm forD for which the associatetbw- gy class of;. Now supposer € I7H”. Thena was
function clearly and provably computes the correct p&jprn at some levey(k) < ¢(i). Hencea can be written
sistence pairs. We then employ the Pairing Uniquenggss sum
Lemma ([13]) which states that any suébhw fuqctlon o= hy + Z hj, (5)
must depend only oD and hence that our given al-
gorithm computes the same pairs as the provably cor- _ o
rect ones. This new reduction algorithm is built on twwyhere /() is a set of indices all less than In
proceduresM ake — Active; and Pair — Simplices. other words, for some subset of indicdi) taken
Make — Active; decides if a given simplex; is or is from {1,2,...4}, the classesh;, or more precisely
not active. The resulting active simplices are then inppt'?¢() (1), for j € I(i), form a basis for the intersec-

into the Pair — Simplices procedure. We will prove thatyjg, homology grouﬁqu(i)_ Using this fact, we define a
th_e analogous_ statement to Statement 8 above is trueﬁ[ﬁ{ction,y 0T A {1,2,...i} by y(a) — k, where
this new 3'9‘?””1”1- , , k is defined as in Eqgn. 5.

Before giving these procedures, we first define a func-
tionn : P(K) — {s+1,s+2,...,m}vian(y) =i o ) . ]
whereo; is the youngest (most recently added) simpld@ir-Simplices Algorithm. We now give an algorithm

in I(7). If I(v) = @, which means that is an allowable which pairs some of the active simplices. These pairings
chain, we set(y) = 0. will complete the definition of théow,, function, the val-

ues of which have already been given for the neutral sim-
o o . plices. The algorithm maintains, for eactandk, a list
Finding Neutral Simplices. Here is pseudocodeforthepf of the paired simplices at stageof the algorithm.

Jjel(a)

recursive procedurg/ake — Active;: Here is the pseudocode:
Vi =0 _ Vr,P? =2
fory:ltOz—ldo. for j=1tosdo
"j = Make — Active; () if o; non-negativehen
end for Vi P;J(J) _ P{?(j_l)
while 35 < i such that(y;) = n(v;) do clse
Yi = Y5+ i =y(la(o;
end while . :yd(i[mggfg])
Return +; ; o
P = P97V U {(01,05)}
For each;, we define Vr # k, pIv) — pgli—b)
end if
a(o;) = 0(yi) 4) end for

18



We then finish the definition ofow), by defining  First, we showh; ¢ ImfZ“ 4% Suppose it was,
lowy(j) = i iff (04,05) is produced byPair — then3a e 1PHI™Y such thatf?“ 4" () = h,.
Simplices. Writing « as in (5), we arrive at a contradiction.

Next we showf? ™99 () € Imf2¢~190): By con-
Matrix Formulation.  As with our original algorithm, struction,y(a(o;)) = ¢. This means that, dropping the
the procedures above can all be accomplished by performaps induced by inclusion for the moment, we can write:
ing column operations on the original boundary matpix
or alternatively, by multiplying on the right by a product a(o;) = ¢ + Z Ck (6)
of elementary matriceg. kel

Let us call a simplex;, potentially neutraliff (o) # , . )
@. The Make — Active, procedure manifests itself bywhereI is some set of indices less thanWe then pass

adding columns from the left which correspond to a&hi,s equation to h°m°'°9>’ and push it fo_rward to level

tually neutral simplices, to colump. If the procedure 9(4), where[a(a;)] = 0, since t?y construction (sge (),

succeeds in raising the lowest one in colujnabove the ¢ aj) = 9(v;). Hence atlevey(j), we see that the image

proper/improper demarcation line, then is in fact ac- O_f hi is equal to the image of th_e sum of classes on the

tive. Otherwise, it is actually neutral and we never use it ,ht' But all of _these classes eX|steq at levels lower than

corresponding column again in the reduction. The rest 12)' Henceh; died at least by Ievej((_‘)y).( 1)

the algorithm just completes the reduction of the matrix, Finally, ~we show that f*V="(h;) ¢

starting all over again from left to right, but this time onlym 2 ~"90=Y " Syppose it were. Then at level

employing columns corresponding to active simplices. g(j — 1), the image of:; is homologous to the image of
At the end of the process, we have a reduced matéixclass coming from before levg(i). Hence, using the

M and a corresponding lowest one functibnw,,. If basis defined in (5) and _dropping maps, we can find an

lowp (§) =i > s, then columnj of V' stores a chain of allowable chaim & Iquffl) such that

neutral simplices; in other words, a non-allowable chain.

If columnj of M is empty, then columpiof V' stores a cy- ) =c + Z ¢,

cle consisting of positive, negative, and neutral simglice teJ

this cycle is precisely the representative of the basis ele-

menthj described above. Fina"y, lwa(]) =1 <s, for some set of indices less than Notice thata(’f}) iS.

then columnj of V stores an allowable chain which dehomologous to zero at leve(;j — 1). So we can add this

stroys the class created by. Hence we have one matrixequation to (6) and pass to homology to obtain:

D and two reduced matrices, M which result from per-

forming column operations oR. By the Pairing Unique- D) + [a(0))] = [a(o;)] =D e+ > he.

ness Lemma ([13]) then, we conclutiev,; = lowg. kel teJ

The correctness proof will therefore be complete aft%'ht all the indices on the right hand side are less than

we prove the follovv_ing, which is the analogue to Stat‘?"afnd so this contradicts the definitiongfa(c;)). There-
ment 8 for our algorithm. fore, hy; dies at level(j).

9 Letr = dim(o;). Thenlowy(j) = i < s iff
quﬂ(i)sg(j) — Z/QZ

PrROOFE We prove the forward direction; the other di-
rection is essentially just a restatement of what follows
below. Letc; be the cycle containing; as constructed

above (5), and leb; be its homology class e 729
We show thath; is born at levelg(i) and dies at level

9(4):
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