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Abstract. This experimental paper makes the case for a new approach to the use of persistent
homology in the study of shape and feature in datasets. By introducing ideas from diffusion
geometry and random walks, we discover that homological features can be enhanced and more
effectively extracted from spaces that are sampled densely and evenly, and with a small amount
of noise. This study paves the way for a more theoretical analysis of how random walk metrics
affect persistence diagrams, and provides evidence that combining topological data analysis
with techniques inspired by diffusion geometry holds great promise for new analyses of a wide
variety of datasets.

1. Introduction

The continually growing importance of analyzing massive datasets has prompted the
development of a number of new techniques for finding shape and feature in point clouds.
Well established methods from statistics are now augmented with approaches that focus on
shape identification, inference, and dimension reduction using methods of geometry and
topology, subjects that were largely regarded in the past as too abstract to be applied to data
analysis. Computational Topology has emerged as a new discipline in the last ten years [12],
and its most significant application to date has been to Topological Data Analysis (TDA) in
which datasets are treated as point clouds, and persistent homology is calculated to look for
both global and local features in these clouds. In parallel, diffusion geometry [9], [10] has
developed into a powerful tool in dimension reduction and the analysis of high-dimensional
data. While its methods are much more analytical than those of computational topology, it
nonetheless shares the same goals and the same spirit of applying well established methods
of geometry to applied problems.

Now that these subjects have come of age, the time has come to consider how they
can be made to work together and to work with methods from statistics. This experimental
article considers the question of how the methods of diffusion geometry can be combined
with TDA. A related theoretical article [16] looks at the question of how to do statistics on the
persistence diagrams that describe the results of applying TDA methods to repeated samples
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from a geometric object. Along with some other recent papers, e.g. [6], these works suggest
possible research directions in support of a future merger of techniques.

Main idea. The main idea that we explore here is that by using random walks on a dataset
one can define metrics that enhance topological properties and increase the capability of
persistent homology to capture them. A well-known example in diffusion is a curve in the
plane which is topologically a circle, but lies close to a figure-8 (see Figure 2 below). When
this curve is sampled densely enough, diffusion geometry recognizes the circle by finding a
new embedding based on the eigenfunctions of an appropriate operator derived from the data.

Our approach is motivated by this idea. We use the diffusion metric Dm to define a
distance between pairs of points in our dataset, and we then construct the Rips complexes
using this distance and compute the corresponding persistence diagram. For reasons described
below, we also consider our own ad-hoc definition of a different symmetric function ρm,
defined below, on our point set and investigate the properties of its associated Rips complexes
and persistence diagrams.

Results. Here we briefly summarize the experimental results, which are described more fully
in Section 5. We ran two main types of experiments on points cloud sampled from the figure
in Figure 2. When we sampled points densely without outliers, we found that the diffusion
metricDm caused the main cycle to separate very cleanly from the shorter cycle introduced by
the bottle-neck near the origin. Here the advantage held by Dm over the traditional Euclidean
distance was striking, while ρm did better than Euclidean distance but certainly not as well as
diffusion.

We also considered what happens when varying amounts of noise, including a decent
number of outliers, were introduced into our dataset. When the density of noisy samples was
small relative to the sampling density on the underlying space, we found that our persistence
diagrams for Dm were mostly unchanged, something which is impossible with the Euclidean
metric. On the other hand, the performance of the diffusion metric rapidly broke down as the
noise-to-signal ratio increased. For these very noisy samples, the ρm-diagrams continued to
retain at least some of the topological structure of the underlying space.

To obtain persuasive results, we needed to take a large number of sample points, large
enough so that the persistence diagram computation would have become prohibitively slow.
To fix this problem, we employed a sub-sampling method broadly inspired by Witness
Complex [11] methodology. This method seems interesting in its own right, and so we
describe it fully in Section 4.

Prior work. A number of authors have begun to study methods for applying persistent
homology to noisy datasets. In one of the first attempts [4], the space of natural images is
denoised before computing a topological filtration that discovers a Klein bottle and leads
to a new compression methodology for images. A more recent effort to preprocess data
before computing persistence is in [15]. In a different direction, [6] defines the concept of
distance from a distribution, which provides one of the first true inter-linkings of probabilistic
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methods with topological ones and allows a new theoretical analysis of how well a noisy
dataset represents the space from which it was sampled.

Outline. Necessary background on persistent homology is given in Section 2, while Section
3 introduces the method of using Euclidean distance to assess the homology of a point
cloud. This method has obvious limitations, to which we propose our solution in Section
4. Experimental results, as well as some implementation details, are presented in Section
5. Finally, Section 6 concludes the paper with a discussion and ideas for future research
directions.

2. Background

Persistent homology is described in great detail in the recent textbook [12]. In this section, we
confine ourselves to a few brief definitions and examples. All homology groups are assumed
to be taken over some field, usually Z/2Z, and are thus just vector spaces over that field. We
assume familiarity with homology itself; see for example [18] for more background.

Sublevel set filtrations. Suppose that we have a topological space M equipped with a real-
valued function f : M→ R. For each r ≤ s and each homological dimension p, the inclusion
Mr ↪→ Ms of sublevel sets induces linear maps Hp(Mr) → Hp(Ms) between homology
groups. In a nutshell, persistent homology uses these linear maps to track the evolution of
the homology of Mr, as r increases from negative to positive infinity, and then compactly
displays this information in persistence diagrams; for an example of the latter, see the right
side of Figure 2.

We now give some more details as to what this means. As an aside, we note that there
is nothing special about homology here, since persistence can be defined for any sequence of
vector spaces connected by linear maps; see [5] for a detailed treatment.

Critical values. Although we ostensibly have infinitely many homology groups, one for
each real number, it often turns out there are only a finite number of changes as we move from
negative to positive infinity. More precisely, we say that r is a homological regular value (hrv)
of f if there exists some ε > 0 such that, for all positive δ < ε, the inclusions Mr−δ ↪→ Mr+δ

induce homology isomorphisms in every dimension. If r does not satisfy this condition, then it
is a homological critical value (hcv). For example, consider the round circle X ⊂ R2 of radius
r as drawn on the left side of Figure 1. This circle defines a distance function dX : R2 → R;
in words, dX(y) is the Euclidean distance between a point y ∈ R2 and its closest neighbor on
X. One can imagine the sublevel sets of dX as being a sequence of thickenings of the circle X
within its ambient space R2. In this case, dX will have only two hcvs, 0 and r. On the other
hand, the function dY, where Y is the space on the left side of Figure 2, will have four hcv’s:
0 < s < r < t (the right lobe is slightly larger than the left one). The smallest non-zero hcv
of dY is called the homological feature size of Y, e.g in Figure 2 it is s.
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Figure 1: The persistence diagram Dgm1(dX) is on the right, where X is on the left.
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Figure 2: The persistence diagram Dgm1(dY) is on the right, where Y is on the left.

Birth, death, diagrams. Returning to the general case, suppose we have a function f : M→
R with a finite set of hcvs a1 < a2 < . . . < an. A function which meets this assumption,
along with the requirement that the homology groups of all sublevel sets be of finite rank, is
called tame. We choose hrvs {bi} with b0 < a1 < b1 < . . . < an < bn, and put Mi = Mri .
Fixing a homological dimension p, we adopt the shorthand notation Hi

p = Hp(Mi), and we
consider the sequence of homology groups connected by linear maps,

0 = H0
p → H1

p → H2
p → . . .→ Hn

p = Hp(M). (1)

For each i ≤ j, we let fi,jp : Hi
p → Hj

p be the map induced on homology by the inclusion
Mi ↪→ Mj . A class α ∈ Hi

p is then said to be born at Mi if α 6∈ im fi−1,i
p . Such an α dies

entering Mj if fi,jp (α) ∈ im fi−1,j
p , but fi,j−1

p (α) 6∈ im fi−1,j−1
p . The persistence of the class α is

bj − bi; this real number gives a measure of how long α lives during the sublevel set filtration.
There is one technical issue to address, which we do via the example of the space Y in

Figure 2. Letting M1 and M2 be sublevel sets just before and just after the hcv s, respectively,
we notice that M1 has the homotopy type of a circle, while M2 has that of a wedge of two
circles. There are thus two 1-dimensional classes α, β born at M2, the ones represented by
the two new circles. On the other hand, α and β both represent the same coset of H2

1/im f1,2
1 ,

since α+β is homologous to the generator of H1
1. Both of these new classes die upon entering

M3, a sublevel set just after the hcv r: one of them becomes homologous to zero, while the
other one becomes homologous to the generator of H1

1. This example illustrates the general
fact that whenever a class α is born at some Mi, an entire coset is born with it, but all classes
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in this coset will die whenever α dies.
For each coset of p-dimensional classes born at Mi and dying entering Mj , we draw

the point (ai, aj) in the plane. The resulting multi-set, Dgmp(f), is the p-th persistence
diagram for the function f . Notice that the persistence of a class α is then just the vertical
distance of its representative point from the major diagonal. For technical reasons that will
soon become clear, we also add all major diagonal points (a, a) where a ≥ 0, taken with
infinite multiplicity, to every persistence diagram. As an example, the right side of Figure 2
displays Dgm1(dY), where Y is the space drawn on the left side of the same figure. Notice
that the “real” 1-dimensional homology of Y shows up as the point on the vertical axis, while
the other non-zero persistence point in the diagram represents the new homology created by a
slight thickening of Y. In terms of the persistence diagram, the homological feature size of Y
shows up as the minimum of the smallest death value of a point on the y-axis, and the smallest
birth value of a point off the y-axis.

Diagram stability. It turns out that the persistence diagrams Dgmp(f) and Dgmp(g), where
f and g are two “close” functions defined on the same domain, will also be “close,” as
measured by an appropriate metric. Indeed, given the inevitability of noisy or incomplete
input, a statement of this kind really has to be true if persistence diagrams are to be a useful
tool for any sort of data or shape analysis.

The bottleneck distance dB between any two persistence diagrams D,D′ is defined as
follows:

dB(D,D′) = inf
Γ:D→D′

sup
u∈D
||u− Γ(u)||∞, (2)

where Γ ranges over all bijections between the diagrams D and D′. Recall that every
persistence diagram contains infinitely many copies of every major diagonal point, and thus
bijections always exist. In words, the bottleneck distance is defined by considering all
matchings between D and D′, assigning the largest l∞ distance between matched points,
and then taking the minimum over all matchings. Note that the matching may not be unique.

Under this metric, the persistence diagram Dgmp(f) is stable to small perturbations of
f . Precisely, the following result was proven first in [7] and then given a wider context in [5]:

Theorem 1 (Diagram Stability Theorem). If X is a compact topological space, then for every
homological dimension p and every pair of tame functions f, g : X→ R,

dB(Dgmp(f),Dgmp(g)) ≤ ||f − g||∞.

Filtered simplicial complexes. In our experiments below, we will not strictly have a real-
valued function on a topological space. Instead, we will consider some finite simplicial
complex K, along with a monotonic function f : K → R that is constant on each (open)
simplex; here monotonic means that if τ is a face of σ, then f(τ) ≤ f(σ). If we consider
values b1 < b2 < . . . < bn for f , we let Ki be the subcomplex of K consisting of all simplices
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whose f -values are no larger than bi. We then have inclusions Ki ↪→ Kj , for i ≤ j, and hence
an application of the homology functor allows us to define persistence and draw persistence
diagrams, exactly as above.

One example that we will make use of below is the following. Suppose that we are given
a finite point set U and a symmetric function ρ : U × U → R on the edges of the complete
graph G with vertex set U, such that ρ(u, u) = 0 for every point u; for example, ρ could be a
metric on U, but it need not be. Given any subgraph H ⊆ G, we define R(H) to be the largest
simplicial complex which has H as its 1-skeleton; note that R(H) is often called a clique
complex in the literature and is akin to a Rips Complex. Since U is a finite set, ρ takes finitely
many values. For each such value ρi, we let Gi ⊆ G be the subgraph with vertex set U and
edge set consisting of all edges with ρ-values less than or equal to ρi. Notice that U ⊂ G0. We
can then filter the simplicial complex R(G) with subcomplexes R(Gi), leading to persistence
diagrams in each homological dimension, which we denote Dgmp(U, ρ).

3. Homology of a Point Cloud

Consider the 1-dimensional homology of the point cloud U on the left side of Figure 3. Taken
literally, this statement is of course absurd, since U is simply a discrete set of points and thus
has homology only in dimension zero. On the other hand, a slight blurring of the point cloud
may result in a clear one-cycle being formed, while a further blurring will pinch this cycle
into two smaller ones. This can been seen in the persistence diagram Dgm1(dU) (right side
of Figure 3), where the different blurrings manifest as sublevel sets of the distance function
dU . In this diagram, we see two highly persistent points, and then quite a few other points
very close to the diagonal. Perhaps one could identify the homology classes associated to the
high persistence points as representing, at least in some sense, the 1-dimensional homology
of the point cloud; in general, it makes sense to think of classes which are born early and
persist for a long time as being in some sense “real.” More humbly, one could just report
the entire persistence diagram as an answer to the point cloud homology question, and let
the end-user make a thresholding decision as to which classes are the most important. In any
case, any persistence-diagram approach will lead to difficulty in two different ways, as we
now describe.

Homological feature size. It would seem reasonable to demand that our guess at the
homology of U should in some sense match with the homology of any topological space
Y from which U was sampled, at least for sufficiently good sampling. But this can never work
in general. For example, our point cloud U was in fact sampled, with very little noise and
absolutely no outliers, from the space Y on the left side of Figure 2. But H1(Y) is rank one,
since Y is topologically a circle.

To be more precise, U is an ε-sample of Y, where ε = ||dY − dU ||∞ is the Hausdorff
distance between the space and the point cloud. Appealing to the above theorem, this
means the two persistence diagrams Dgm1(dY ) and Dgm1(dU) can be no more than ε apart
in the bottleneck metric. Recall that the actual first homology of Y is represented by the
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Figure 3: On the left, a sampled version U of the space Y shown in figure 2. The persistence diagram
Dgm1(dU ) is on the right; points of higher persistence are drawn larger for clarity.

point directly on the y-axis of Dgm1(dY ), while the other point represents the new one-
cycle formed by a slight thickening of Y. Although the optimal bijection between the two
diagrams certainly matches the two large-persistence points in Dgm1(dU) with these two
points, sending all other points to the major diagonal, we cannot hope to tell which Dgm1(dU)-
point matched to the y-axis point, or indeed how many y-axis points there really were. In a
nutshell, the problem is that the homological feature size of Y is very small, and so nothing
but the very densest of samples has any hope of picking out the one true cycle without also
suggesting the extra cycle.

Outliers. There is a second, and in some sense far graver, problem: persistence diagrams are
stable to small changes in input set, but not to a small amount of very large noise. Namely,
suppose that the vast majority of points in a cloud U seem to trace out a clear space Y, but
that there are also a few very bad sampling errors here and there. More formally, suppose
that there is a tiny subset U0 of U such that U− U0 is an ε-sample of Y, for some very small
ε, but that the points in U0 lie quite far away from Y. In this case, the Hausdorff distance
between U and Y will be quite high, and thus the Diagram Stability Theorem gives us no
useful guarantees about the relationship between the respective diagrams.

For example, suppose U is the point cloud shown on the left side of Figure 4, which
seems to be a very faithful sample of a perfectly round circle X. The persistence diagram
Dgm1(dU) for this sample consists of the box on the right of the same figure. Compare this
to the right side of Figure 1, which shows the persistence diagram Dgm1(dX); we see that the
two diagrams are quite close in the bottleneck metric.

On the other hand, suppose that we add one solitary outlier directly in the center,
producing the new point cloud V, which is also shown on the left of Figure 4. Looking at
the cross on the right side of the same figure, we find that Dgm1(dV ) is markedly different
from Dgm1(dU), as the persistence of the main cycle has diminished by a factor of

√
3. The

reason is obvious: suppose the circle has radius r0; for U, this main cycle dies when we reach
the side length of an equilateral triangle inscribed in the circle, which is

√
3r0, while it dies at

r0 for the sample with just one outlier.
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(a) Samples (b) Diagrams

Figure 4: Left: dataset U of size 100 sampled from a circle. The noisy dataset V, consisting of U plus
the central point (hollow point) is also depicted. Right: persistence diagrams. The symbols � and ×
mark persistent homology classes corresponding to ’clean’ and ’noisy’ datasets, respectively.

Summary. Looking at the above paragraphs in a slightly different light, we see that the
idea of doing homology inference by thickening a point sample U into gradually growing
Euclidean balls and then computing the resulting persistence diagram has two major flaws.
First, the space itself might have very small homological feature size. We can get around this
by taking an extremely dense point sample, but this will come at a high computational cost.
More seriously, any realistic sample will of course have a few bad outliers, and increasing the
density will never hope to eliminate them.

4. Random Walk

Here we define the two symmetric functions, each based on random walk, that we use in
our experiments. We also describe the witness-like method we employ to achieve a massive
increase in computation speed.

Diffusion metric. There are various definitions of the diffusion metric to be found in the
literature; we use the definition given in [8]. First, we imagine that we are standing at a
particular point u ∈ U and are going to choose a random step to another point v ∈ U,
where the probability of choosing v is proportional to some kernel function k(u, v) which is
a decreasing function of the Euclidean norm ||u − v||; most of the literature uses a kernel
function of the form k(x, y) = exp(− ||x−y||

2

α
), where α is some positive tuning parameter.

That is, we choose v with probability

φ(u, v) =
k(u, v)

Σzk(u, z)
, (3)

where the sum in the denominator runs over all points in z ∈ U except u itself. We also set
φ(u, u) = 0 for all u ∈ U.
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The assignments φ(u, v) place probability weights on the edges of the directed complete
graphG, and we then run random walks on this graph with these weights. Choosing a positive
integer m, let φm(u, v) be the probability that a random walk of exactly m steps starting at u
will end at v. We then define the diffusion distance Dm : U × U → R by:

Dm(x, y) =
√

Σu[φm(x, u)− φm(y, u)]2, (4)

where the sum runs over all points u ∈ U.
Now that we have a symmetric function on the edges of G, we can compute the

persistence diagrams Dgmp(U, Dm) in each homological dimension, as described at the end
of section 2. Note that the integer m is of course a parameter that we must select in advance;
our preliminary experiments indicate that values ofm somewhere in the 10−30 range provide
the best results, but we cannot say anything more conclusive than that at this time.

Random walk function. For an alternative set of experiments, we also consider the following
symmetric function ρm : U × U → R. We again run random walk on U, but this
time taking a step from u to v with probability φ(u, v) proportional to the kernel function
κ(u, v) = ||u − v||−2. Choosing a positive integer m, let φ≤m(u, v) be the probability that a
random walk of less than or equal to m steps which starts at u will end at v; more precisely,
we set

φ≤m(u, v) =
∑
k≤m

φk(u, v),

where φk is defined above. Finally, we define:

ρm(u, v) =
1

min{φ≤m(u, v), φ≤m(v, u)}
, (5)

for u 6= v and ρm(u, u) = 0, and then we compute the persistence diagrams Dgmp(U, ρm) in
each homological dimension, as described at the end of section 2.

Our reasons for defining and testing this new function were as follows. First of all,
we wanted to use a kernel function which did not depend on some parameter α; in our
experiments with Dm, we were able to tune α correctly by exploiting prior knowledge of the
data, but this cannot be done in reality. It also seemed more natural to use the random-walk
probabilities φm directly, rather than summing over intermediate points as in the definition of
Dm. This was especially appealing in the case of outliers: if a data point v lies far way from
the rest of the data points u, then the numbers φm(u, v) will all be quite small, and hence
ρm(u, v) will be large. As we see below, our intuitions were partially but not fully justified by
our experimental results.

Sub-sampling. In order to produce a persistence diagram from a point cloud endowed with a
metric, one first has to construct the filtered Rips complex and then feed the resulting simplices
to a matrix reduction algorithm [13] which runs in worst-case cubic time in the number of
input simplices. Thus, assuming we start with N points, and compute only the d-skeleton
of the Rips complex (for example, if we are only interested in persistent homology up to
dimension (d − 1)), the entire computation takes O(N3(d+1)) time; hence a large number of
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points will certainly lead to a very slow diagram computation. On the other hand, any random-
walk-based metric must require a fairly large number of points sampled from the underlying
space: if one wishes to “see” the true geometry, then one must be able to choose from a large
number of paths that lie along the space.

To resolve this conflict, we propose the following technique. From an initial large sample
U of size N , we draw a much smaller sub-sample U0 of size n << N . We compute all
pairwise distances Dm(u, v) for all pairs from the large sample, but we then build a filtered
Rips complex using only the U0-points as vertices and compute the resulting persistence
diagrams. The complexity is then much better: the entire algorithm from point cloud to metric
ρm/Dm to d-skeleton of Rips complex to persistence diagram runs in O(n3(d+1) +mN3).

Equivalently, one may think of defining a new metric on the space U0 which is based
on random walk, but where the random walker is allowed to explore within a much larger
set of available paths. In this way, we satisfy two goals: a small filtered simplicial complex,
but one with edge weights derived from a much larger sample that more faithfully reflects the
underlying space.

5. Experiments

At the end of this section, we present our main experimental results, and we argue that
they provide strong evidence for random-walk methods being a solution to the two problems
discussed at the end of Section 3. We begin the section with details on the implementation
of the algorithms used to compute persistent homology, as well as the computation of the
numbers φm, which then lead directly to the Dm and ρm edge weights.

5.1. Implementation

To compute persistent homology, we used the algorithm library Dionysus [17]. In particular,
we took advantage of the implementations of the persistent homology algorithm from [13] and
the Bron-Kerbosch algorithm [3] for the construction of the Rips complex. We also produced
a MATLAB wrapper of Dionysus to streamline the design and execution of these and future
experiments [14].

Probabilities. Here we describe the computation of the metrics Dm and ρm given a dataset
of witnesses and a sub-set of landmarks. In each case, we represent the metric as a matrix of
all pair-wise distances between all points in the dataset, without making a distinction between
witness and landmark points. We then construct the filtered Rips complex using only the
distances between landmark points.

The probability φm(u, v) of a random walk of exactly m steps from a point u to a point
v is recursively defined using the value of φm−1(u, v) as follows:

φm(u, v) =
∑
z

φm−1(u, z)φ(z, v) (6)
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Thinking of each φm as an n×n matrix, where n is the total number of points, we can rewrite
(6) in matrix form:

φm = φm−1 ◦ φ, (7)

φ≤m =
∑
k≤m

φk (8)

Implementing (8) in a straightforward way gives us a total complexity of O(n3m) to
compute our ad-hoc metrics ρm. However, for the diffusion metrics Dm, we need only
compute random walks for step size exactly m. In this case, rising the matrix to the power
m can be done by a dichotomy algorithm that computes the result in logm multiplications,
giving a total complexity of O(n3 logm). Because of the relatively small values of m that
were used in experiments, numerical precision errors due to matrix multiplication are small
and can be ignored.

Sub-sampling. We now describe the procedure that we used to sub-sample a witness set
U0 from a initial point sample U. In a nutshell, we iteratively draw one landmark point
from a very dense sampling of the underlying space. For each landmark point we define a
no-inclusion ball of a radius δ. Each point from the dataset that is inside this ball will not
be considered later, and could not be drawn in future iterations. It is obvious that no two
landmark points drawn by this algorithm will lie closer than δ.

5.2. Results

Our experiments can be divided into two main groups. First we investigated the performance
of our random-walk metrics versus the Euclidean metric on several sets of points densely
sampled without noise from the nearly figure-eight space; our goal was to see which metric
did the best job amplifying the true topological signal from the underlying space. Then we
began to progressively add noise to our sample to see which metrics preserved which type of
signal.

Amplifying the signal. For this experiment we drew samples from three versions of the
nearly figure eight space, with neck size varying from large to small, and for each sample
we computed the one-dimensional persistence diagrams associated to the diffusion metric
Dm, our metric ρm, and the Euclidean metric. The goal was to explore how easy it would be
to distinguish signal from noise on the persistence diagram. In this synthetic case, we can of
course precisely define the terms signal and noise, since we have a priori information about
the original space.

The point clouds consisted of 1800 points total on average, each with about 225 landmark
points. For subselecting landmarks from the whole point cloud we used the algorithm as
defined in section 5.1, with a higher value of δ than for the initial sampling of the underlying
space cloud. Our primary criterion for choosing δ was to draw approximately 225 landmark
points each time.
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(a) Large neck size, m = 10

(b) Medium neck size, m = 10

(c) Small neck size, m = 10

Figure 5: Dm metric

(a) Large neck size, m = 20.

(b) Medium neck size, m = 20.

(c) Small neck size, m = 20.

Figure 6: ρm metric

Figure 7: Witnesses appear as gray points, with landmarks as solid black points. The overlaid cycles
are the canonical representatives for the most persistent homology classes. The persistence diagram
for each point cloud appears to its immediate right.

We then ran a series of computations using various choices for parameter values (step
size m for both metrics Dm and ρm; α for Dm only), and we found that these choices greatly
affected the diagram outcome. Moreover, for different point clouds, the “best” parameter
values differed. A table which summarizes the experimental results for all chosen parameter
values can be found at http://www.math.duke.edu/˜elimgta/metrics/ [2]. Here we show only the
results for the best choice of parameters.

Our results for Dm and ρm are presented in Figure 7, and the results for Euclidean
distance appear in Figure 8. As we can see, the Dm-diagrams closely resemble those of

(a) Large neck
size

(b) Medium neck
size

(c) Small neck
size

Figure 8: Persistence diagrams computed for the same point clouds as in figure 7, this time with the
Euclidean metric.
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a round circle (compare with figure 1) in that there is only one point of non-negligible
persistence; this point does move closer to the diagonal as the neck size decreases, but the
topological signal remains quite clear, even for the smallest neck, since no other classes appear
in the diagram. The Euclidean diagrams, on the other hand, all feature two high-persistence
points. As the neck size decreases, these points move closer to one another, making the
topological signal harder to discern. A nearly identical situation holds for the ρm-diagrams,
although the statistics in [2] show that the signal/noise ratio is in fact marginally better for ρm
versus Euclidean in most cases.

It is worth noting that one of the biggest problems that we have stumbled upon was the
proper choice for α in the kernel used in the Dm metric. As can be seen in [2], ”bad” choices
of α lead either to incorrect homology estimates, or to signal/noise ratios close to that of the
Euclidean metric. For this particular series of figure-eight datasets, we found that the best
choice of α was always around one-tenth of the neck size. In general, though, we have an
open question: what strategy should be used to choose the α value for datasets where we have
no a priori information about the underlying topological space.

(a) Small level of noise, m = 20.

(b) Medium level of noise, m = 20.

(c) High level of noise, m = 30.

Figure 9: Dm metric

(a) Small level of noise, m = 20.

(b) Medium level of noise, m = 20.

(c) High level of noise, m = 30. The cycle shown here
is NOT the most persistent cycle, but the second most
persistent one. The most persistent one includes almost
solely noise points and has very late birth time

Figure 10: ρm metric

Figure 11: Witnesses appear as gray points, with landmarks as solid black points. The overlaid cycles
are the canonical representatives for the homology classes corresponding to the points marked by
circles in the diagrams. The persistence diagram for each point cloud appears to its immediate right.
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Exploring robustness. As mentioned above, persistence diagrams computed using the
Euclidean metric are extremely sensitive to even a small amount of very bad noise. In a
second set of experiments, we investigated the robustness of the Dm and ρm diagrams in the
presence of a increasing number of outliers.

For these experiments, we drew three different samples from the same nearly figure-eight
space; each sample contained some outliers, with the number of outliers increasing with each
draw. Each time, the goal was the same as for the first set of experiments: draw out the true
topological signal.

The sampling and sub-sampling procedures were the same as before: the point clouds
consisted of 1800 points on average, from which we drew out around 225 landmark points.
Note that most of the outlier points became landmarks, a clear consequence of the sub-
sampling procedure described above.

As before, we ran a series of computations using various parameter values, and
summarized all results in a table [2]. The results for the best parameter choices are shown
in Figure 11. In the left column, we see the results for the Dm-metric. These diagrams show a
weaker topological signal than in the no-noise experiments. The canonical representative
for the most persistent class hints at the underlying space, but also contains quite a few
outliers; Reading the left column top-to-bottom, we see that the persistence of spurious classes
increases with the number of outliers.

The right column of the same figure displays the ρm-results. Again, there is certainly no
crystal-clear topological signal, at least compared to the no-noise experiments. However, one
feature of the ρm metric that inspired us to publish its results is the fact that its diagrams do
contain a point with non-negligible persistence whose canonical representative cycle traces
out the underlying space without including any outliers. This compares well with the cycles
for Dm, which always seem to pick out outliers.

6. Discussion

The ideas and experiments described above demonstrate how the use of methods on random
walks rather than the usual Euclidean distance provides a more robust and powerful way to use
topological data analysis (TDA) in making measurements of dataset shape. The approach we
have put forward stands in sharp contrast to methods where noise is only addressed in a pre-
processing step. Instead it integrates the process of de-noising and homological calculation,
and incorporates the important ideas put forward in [9] that use local proximity information
in the determination of global structure. Combined with other new approaches of this form,
e.g. [6], we believe that TDA is moving to a new level.

Most real world datasets have some level of noise, and the challenge now is to fine tune
the random walk metric to different types of data. We are particularly interested in discovering
stratified structure, based on the ideas of [1].

We sum up with the visual image of a triangle, with vertices corresponding to TDA,
diffusion geometry (DG) and statistical methodology (S); see Figure 12. This paper makes a
first stab at the edge from TDA to DG, and the papers [6] and [16] make steps towards the
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Figure 12: A triangle of future research directions.

edge from TDA to S. These methods can be used together to make homological inference the
effective shape analysis tool that it promises to be.
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