
The Robustness of Level Sets ?

Paul Bendich1,2,3, Herbert Edelsbrunner1,2,3,5, Dmitriy Morozov4, and Amit Patel1,2

1 IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
2 Dept. Comput. Sci., Duke Univ., Durham, North Carolina
3 Dept. Mathematics, Duke Univ. Durham, North Carolina

4 Depts. Comput. Sci. and Math., Stanford Univ., Stanford, California
5 Geomagic, Research Triangle Park, North Carolina.

Abstract. We define the robustness of a level set homology class of a function
f : X → R as the magnitude of a perturbation necessary to kill the class. Casting
this notion into a group theoretic framework, we compute the robustness for each
class, using a connection to extended persistent homology. The special case X =
R

3 has ramifications in medical imaging and scientific visualization.
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1 Introduction

The work reported in this paper has two motivations, one theoretical and the other prac-
tical. The former is the recent introduction of well groups in the study of mappings
between topological spaces. Assuming a metric space of perturbations, we have such a
group for each subspace A ⊆ Y, each bound r ≥ 0 on the magnitude of the perturba-
tion, and each dimension p. These groups extend the boolean concept of transversality
to a real-valued measure we refer to as robustness. Using this measure, we can quantify
the robustness of a fixed point of a mapping [8] and prove the stability of the apparent
contour of a mapping from an orientable 2-manifold to R2 [7]. In this paper, we con-
tribute to the general understanding of well groups by studying the real-valued case.
Specifically,

I. we characterize the well group of f : X → R when the space A is a single point;
II. we give an algorithm relating the well diagram of f and A with the extended per-

sistence diagram of f .

In the full version of this paper, we extend these results to the case when A is a finite
union of points and intervals. Applications of this theoretical work can be found in
scientific visualization, where data in the form of real-valued functions is common. To
mention one example, the magnetic resonance image of a person’s brain results in a
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3-dimensional array of intensity values, best viewed as a function from the unit cube to
the real numbers. Generically, the preimage of a value a ∈ R is a 2-manifold, referred
to as a contour or an isosurface [10, 12]. We contribute to the state of the art by

III. explaining how the homology of an isosurface can be read off the extended persis-
tence diagram of the function;

IV. describing how the robustness of features in isosurfaces can be read off the same
diagram.

We believe that these results warrant the development of extended persistence diagrams
as a new interface tool to efficiently select interesting collections of isosurfaces. We
view this tool as complementary to the contour spectra described in [1], which plot
continuously varying quantities, such as area and volume, across the sequence of level
sets. The most novel aspect of this new tool is the robustness information, which is
readily available through subregions of the diagram.

Outline. In Section 2, we review necessary background on persistence diagrams and
well groups. In Section 3, we present our main result: the characterization of the well
groups. In Section 4, we explain the relationship between the points in the persistence
diagram and the homology of level sets, extending it to robust homology in Section
5. Finally, Section 6 concludes the paper with a brief discussion of further research
directions.

2 Background

This section begins with a review of persistence and persistence diagrams. Then we give
a description of the 1-parameter family of well groups, and conclude with an example
that illustrates the given definitions.

Persistence. The persistence of homology classes along a filtration of a topological
space can be defined in a quite general context [5]. For this paper, we need only a
particular type of filtration, one defined by the sublevel sets of a tame function. Given a
real-valued function f on a compact topological space X, we consider the filtration of
X via the sublevel sets Xr(f) = f−1(−∞, r], for all real values r. Whenever r ≤ s,
the inclusion Xr(f) ↪→ Xs(f) induces maps on the homology groups Hp(Xr(f)) →
Hp(Xs(f)), for each dimension p. Here we will use Z/2Z coefficients. Often we will
suppress the dimension from our notation, writing H(Xr(f)) =

⊕
p Hp(Xr(f)); in this

case, a map H(Xr(f)) → H(Xs(f)) will of course decompose into maps on each factor.
A real value r is called a homological regular value of f if there exists an ε > 0 such
that the inclusion Xr−δ(f) ↪→ Xr+δ(f) induces an isomorphism between homology
groups for all δ < ε. If r is not a homological regular value, then it is a homological
critical value.

We say that f is tame if it has finitely many homological critical values and if
the homology groups of each sublevel set have finite rank. Assuming that f is tame,
we enumerate its homological critical values r1 < r2 < . . . < rn. Choosing n + 1
homological regular values si such that s0 < r1 < s1 < . . . < rn < sn, we put



Xi = Xsi(f). We have X0 = ∅ and Xn = X, by compactness. The inclusions Xi ↪→ Xj

induce maps fi,j : H(Xi) → H(Xj) for 0 ≤ i ≤ j ≤ n and give the following filtration:

0 = H(X0) → H(X1) → . . . → H(Xn) = H(X). (1)

Given a class α ∈ H(Xi), we say that α is born at Xi if α 6∈ im fi−1,i. A class α born
at Xi is said to die entering Xj if fi,j(α) ∈ im fi−1,j but fi,j−1(α) 6∈ im fi−1,j−1. We
remark that if a class α is born at Xi, then every class in the coset [α] = α+im f i−1,i is
born at the same time. Of course, whenever such an α dies entering Xj , the entire coset
[α] also dies with it.

Extended persistence. Note that the filtration in (1) begins with the zero group but ends
with a potentially nonzero group. Hence, it is possible to have classes that are born
but never die. We call these essential classes, as they represent the actual homology
of the space X. To measure the persistence of the essential classes, we follow [4] and
extend (1) using relative homology groups. More precisely, we consider for each i the
superlevel set Xi = f−1[sn−i,∞). For i ≤ j, the inclusion Xi ↪→ Xj induces a
map on relative homology H(X,Xi) → H(X,Xj). We have X0 = ∅ and Xn = X by
compactness. These maps therefore lead to the extended filtration:

0 = H(X0) → H(X1) → . . . → H(Xn) = H(X)

= H(X,X0) → H(X,X1) . . . → H(X,Xn) = 0. (2)

We extend the notions of birth and death in the obvious way. Since this filtration begins
and ends with the zero group, all classes eventually die.

The information contained within the extended filtration (2) can be compactly rep-
resented by persistence diagrams Dgmp(f), one for each dimension p in homology; see
Figure 1. Each such diagram is a multiset of points in the plane: it contains one point
(ri, rj) for each coset of classes that is born at Xi or (X,Xn−i+1), and dies entering
Xj or (X,Xn−j+1). In some circumstances, it is convenient to add the points on the
diagonal to the diagram, but in this paper, we will refrain from doing so. The persis-
tence diagram contains three important subdiagrams, corresponding to three different
combinations of birth and death location. The ordinary subdiagram, Ordp(f), repre-
sents classes that are born and die during the first half of (2). The relative subdiagram,
Relp(f), represents classes that are born and die during the second half. Finally, the
extended subdiagram, Extp(f), represents classes that are born during the first half and
die during the second half of the extended filtration. Note that points in Ordp(f) all
lie above the main diagonal while points in Relp(f) all lie below. On the other hand,
Extp(f) may contain points on either side of the main diagonal. By Dgm(f), we mean
the points of all diagrams in all dimensions, overlaid as one multiset of points.

Note that the number of points in Extp(f) is precisely the rank of the p-th homology
group of X. A similar formula holds for the sublevel set Xr(f). Using levelset zigzag
modules introduced in [3], we will see that this way of reading the rank of homology
groups can be extended to level sets and, more generally, to sets of the form f−1[a, b].

Well groups. Given a continuous function f : X → R and a value a ∈ R, we review
the definition of the well groups Up(a, r) for each radius r ≥ 0 and each dimension p.



Since a will be fixed, we usually drop it from the notation and simply write U(r), by
which we mean the direct sum of groups Up(a, r), over all homology dimensions p. We
will need the assumption that f−1(a) has homology groups of finite rank.

To begin, we define the radius function fa : X → R by mapping each point x
to fa(x) = |f(x) − a|. Using this real-valued function, we filter X via sublevel sets:
Xr(fa) = f−1

a [0, r]. For r ≤ s, there is a map fr,s : H(Xr(fa)) → H(Xs(fa)). By
an r-perturbation h of f , we mean a function h : X → R such that ‖h− f‖∞ =
supx∈X

|h(x) − f(x)| ≤ r. The preimage of a under any such h will obviously be a
subset ofXr(fa), and hence there is a map on homology, jh : H(h−1(a)) → H(Xr(fa)).
Given a class α ∈ H(Xr(fa)), we say that α is supported by h if α ∈ im jh. Equiva-
lently, h−1(a) carries a chain representative of α. The well group U(r) ⊆ H(Xr(fa)) is
then defined to consist of the classes that are supported by all r-perturbations of f :

U(r) =
⋂

‖h−f‖
∞

≤r

im jh.

For r ≤ s, the map fr,s restricts to U(r) → H(Xs(fa)). On the other hand, H(Xs(fa))
contains U(s) as a subgroup. It can be shown that U(s) ⊆ fr,s(U(r)) whenever r ≤ s;
see [8]. In other words, the rank of the well group can only decrease as the radius
increases.

We call a value of r at which the rank of the well group decreases a terminal critical
value. The well diagram of f and a is then the multiset of terminal critical values of
fa, taking a value k times if the rank of the well group drops by k at the value. Here
we note that well groups can be defined in a more general context [8], given a mapping
f : X → Y, a subspace A ⊆ Y, and a metric space of perturbations. In this general
setting, the relationship between the terminal critical values and the homological critical
values of fa is not completely understood. However, for Y = R and A = {a}, we will
see shortly that the former is a subset of the latter.

Example. Consider the torus X, as shown in Figure 1, along with the vertical height
function f and a value a ∈ R. The preimage of a, f−1(a) = f−1

a (0), consists of two
disjoint circles on the torus; hence there are two components and two independent 1-
cycles, all belonging to the well group. For small values of r, Xr(fa) consists of two
disjoint cylinders. The homology has yet to change; furthermore, although the proof
will come later, all classes still belong to the well group.

Now consider the value of r shown in Figure 1. For this r, the sublevel set Xr(fa)
consists of two pair-of-pants glued together along two common circles. We note that
H0(Xr(fa)) has dropped in rank by one, while the rank of H1(Xr(fa)) has grown to
three. In contrast, the rank of U1(r) is less than or equal to one. Indeed, the function
h : X → R, defined by h = f − r, is an r-perturbation of f and its level set at a,
h−1(a) = f−1(a + r), is a single closed curve. Since the rank of the first homology
group of that curve is one, and since the rank of im jh can be no bigger than this rank,
the well group U1(r) can also have rank at most one. That it does in fact have rank
exactly one will follow from our results in the next section.
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Fig. 1: Left: the torus and the preimage of the interval [a − r, a + r]. Right: the persistence dia-
gram of the vertical height function. Each point is labeled by the dimension of the corresponding
homology class.

3 Characterization

In this section, we characterize the well groups. We begin with a consequence of the
exactness of the Mayer-Vietoris sequence, see eg. [11], which will provide the main
technical ingredient of our proof.

Mayer-Vietoris sequence. For convenience, we establish the following notational con-
vention, wherein we reuse the same letter in different fonts. If X ⊆ Y are topological
spaces, then inclusion induces a map x : H(X) → H(Y) on homology groups and we
write X = im x for the image of this map. Note that X is always a subgroup of H(Y),
namely the subgroup of homology classes that have a chain representative carried by X.
Note also that the rank of X can never exceed the rank of H(X). Suppose that W ⊆ X

are two subspaces of Y. Then, from the chain of maps H(W) → H(X) → H(Y), we
see that W must be a subgroup of X. The following lemma is a direct consequence of
the exactness of the Mayer-Vietoris sequence. However, we will use it often so it seems
reasonable to state it formally.

1 (Mayer-Vietoris Lemma) Suppose that we can write a topological space Y as Y =
C ∪ D, with E = C ∩ D. If a class α ∈ H(Y) belongs to C as well as to D, then α also
belongs to E.

PROOF. Following our convention, we use the notation c : H(C) → H(Y) for the map
on homology induced by the inclusion of C in Y. Similarly, we write d : H(D) → H(Y)
and e : H(E) → H(Y), as well as ec : H(E) → H(C) and ed : H(E) → H(D). Note
that C = im c, D = im d, and E = im e. Consider now the relevant portion of the
Mayer-Vietoris sequence for the union Y = C ∪ D:

H(E) H(C)⊕ H(D) H(Y).//

(ec,ed)
//

c−d



By assumption, α ∈ C, so there exists some αc ∈ H(C) such that c(αc) = α. Similarly,
there exists an αd ∈ H(D) such that d(αd) = α. This implies that the pair (αc, αd)
belongs to the kernel of c−d, and thus also, by exactness of the sequence, belongs to the
image of (ec, ed). Hence there exists αe ∈ H(E) with ec(αe) = αc and ed(αe) = αd.
In particular, since e = c ◦ ec, we have e(αe) = α, and therefore α ∈ E as claimed.

In the typical application of the Mayer-Vietoris Lemma, we will construct subspaces
B0 ⊆ C and B1 ⊆ D such that α ∈ B0 ∩ B1. From the remark above, we know that
B0 ⊆ C and B1 ⊆ D. The lemma then applies and we can conclude that α ∈ E, as
before.

One-point case. We now suppose that we have a topological space X and a function
f : X → R, and we find the well groups U(a, r) = U(r). Recall that Xr(fa) =
f−1
a [0, r] = f−1[a − r, a + r]. To state the formula, we distinguish two particular

subspaces of Xr(fa), namely the top level set, B0,r = f−1(a+ r), and the bottom level
set, B1,r = f−1(a − r). Using the convention from before, we write B0,r and B1,r for
the images of H(B0,r) and H(B1,r) in H(Xr(fa)).

2 (One-Point Formula) U(r) = B0,r ∩ B1,r, for every r ≥ 0.

PROOF. We simplify notation by fixing r and dropping it from our notation. We prove
equality by proving the two inclusions in turn. To show U ⊆ B0 ∩ B1, consider a class
α ∈ U. We define h0 = f−r and h1 = f+r and note that they are r-perturbations of f ,
with h−1

0 (a) = B0 and h−1
1 (a) = B1. By definition of the well group, α is supported by

every r-perturbation of f , and therefore by h0 and by h1. It follows that α ∈ B0 ∩ B1.
To show B0 ∩ B1 ⊆ U, we consider a class α ∈ B0 ∩ B1 and let h be an arbitrary r-

perturbation of f . To finish the proof, we just need to show that α is supported by h. We
define C = {x ∈ Xr(fa) | h(x) ≥ a} and D = {x ∈ Xr(fa) | h(x) ≤ a}. Note that
C ∪ D = Xr(fa) while C ∩ D = h−1(a). Furthermore, the inequality ‖h− f‖∞ ≤ r
implies that B0 ⊆ C and B1 ⊆ D. By the Mayer-Vietoris Lemma, α is supported by
h−1(a), as required.

We note that the One-Point Formula implies that the well group for a Morse function
f can change only at critical values of the function fa. In other words, terminal critical
values are, in this simple context, just ordinary critical values. Indeed, if [r, s] is an
interval that contains no critical values of fa, then there is a deformation retraction
Xs(fa) → Xr(fa) providing an isomorphism H(Xr(fa)) → H(Xs(fa)). Furthermore,
this retraction maps B0,s onto B0,r, in such a way that that the images of H(B0,r) and
H(B0,s) in H(Xs(fa)) are identical. Similarly, the images of H(B1,r) and H(B1,s) in
H(Xs(fa)) are identical. Hence the well groups U(r) and U(s) are isomorphic.

4 Combinatorics of Homology

We note that the groups relevant to the One-Point Formula are all groups of a very
particular type. Namely, each is the image, under a map induced by inclusion, of the
homology of a level set of f . In this section, we describe a relationship between the



points in the extended persistence diagram of f and the homology groups of any level
set. More generally, we show how the homology of the preimage of any interval can be
read from the extended persistence diagram. We also give a similar relationship for the
image induced by the inclusion of a smaller interval into a bigger one.

Common basis. The main idea here, stated intuitively, is that each point in the per-
sistence diagram corresponds to a unique basis vector of an abstract vector space in
such a way that the points in certain subregions of the diagram give crucial informa-
tion. Slightly more precisely, we choose a persistence module basis B for the extended
filtration (2), one which results from transforming a basis of the levelset zigzag module
in the way described by the Pyramid Basis Theorem; for complete precision, we refer
the reader to the full version of this paper. Following [6] and [3], we note that these
basis vectors correspond bijectively to the points in the extended persistence diagram.
We then define an abstract vector space V = 〈B〉. By V , we will mean the collection
of those particular vector subspaces of V that have a basis consisting of vectors chosen
from B; in other words, V = {〈B′〉 | B′ ⊆ B}.

Now suppose that we have a pair of real numbers a ≤ b and consider the homology
of f−1[a, b], the interlevel set defined by [a, b]. For convenience, we assume that a and
b are different from all coordinates of points in Dgm(f). We will demonstrate shortly
that a basis for H(f−1[a, b]) can be read directly off the extended persistence diagram.
To formulate this claim, we define two multisets of points:

Lp[a, b] = {(x, y) ∈ Ordp(f) | x < b, y > b} t {(x, y) ∈ Extp(f) | x < b, y > a},

Rp[a, b] = {(x, y) ∈ Extp(f) | x > b, y < a} t {(x, y) ∈ Relp(f) | x > a, y < a},

for every dimension p; see Figure 2. It will be convenient to glue the domains of the
three subdiagrams and draw the result as a right-angled triangle, as in Figure 3. In this
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Fig. 2: From left to right: the shaded regions in the ordinary, extended, and relative subdiagrams
in which the points correspond to the basis of the homology of the interlevel set defined by [a, b].

triangle, the birth and death axes go from −∞ up to +∞ and then continue on back
to −∞. In other words, we flip the extended subdiagram upside down and glue its
(formerly) upper side to the upper side of the ordinary subdiagram. Similarly, we rotate
the relative subdiagram by 180 degrees and glue its (formerly) right side to the right



side of the extended subdiagram. After gluing the three domains, we rotate the design
by −45 degrees so the triangle rests on its longest side, consisting of the diagonals in the
ordinary and relative subdiagrams. The diagonal of the extended subdiagram is now the
vertical symmetry axis passing through the middle of the triangle. We note that there is a
straightforward translation of this triangular design to the representation of persistence
advocated in [2]. Namely, draw a symmetric right-angled triangle downward from each
point in the multiset and call the horizontal lower edge the corresponding bar. The
barcode is the multiset of bars, one for each point in the diagram.

Reading homology. The purpose of the multisets Lp[a, b] and Rp[a, b] is to offer a con-
venient way to read the homology of a level set or an interlevel set from the persistence
diagram. We make this statement precise in the following lemma, which is a corollary
of the Pyramid Basis Theorem given in the full version of this paper.

3 (Interlevel Set Lemma) For each dimension p and each pair of real numbers a ≤ b,
there exists an isomorphism taking Hp(f

−1[a, b]) onto the vector space G ∈ V spanned
by the basis vectors corresponding to the points in Lp[a, b] ∪ Rp+1[a, b]

Recall that the points in Extp(f) determine the homology of X. This is a special case
of the lemma. To get f−1[a, b] = X, we choose a smaller than the minimum function
value and b larger than the maximum function value. Hence, Lp[a, b] = Extp(f) and
Rp[a, b] = ∅ for all dimensions p, as required. Of course the homology of a level set
f−1(a) can also be read off via the Interlevel Set Lemma; one simply sets a = b and
makes the necessary adaptations to the formula.

Now suppose we have a pair of nested intervals [a, b] ⊆ [c, d]. By the Interlevel
Set Lemma, there are isomorphisms that take the homology groups H(f−1[a, b]) and
H(f−1[c, d]) onto groups G,G′ ∈ V , respectively. The inclusion of the smaller into the
larger interval induces a map on homology, which composes with the isomorphisms
obtained from the Interlevel Set Lemma to give g : G → G′. Since the two groups are
members of V , there is a natural map from G to G′, namely the one that restricts to the
identity on the span of their shared vectors and is zero otherwise. Not surprisingly, g is
exactly that map. We give the proof of this result in the full version of this paper.

4 (Interval Mapping Lemma) Let [a, b] ⊆ [c, d] and let G,G′ be the corresponding
groups in V . Then the image of the map g : G → G′ is in V , with basis B(im g) in
bijection with the multiset (Lp[a, b] ∩ Lp[c, d]) ∪ (Rp+1[a, b] ∩ Rp+1[c, d]).

5 Combinatorics of Robustness

This section gives a procedure for reading the well diagrams from the persistence dia-
gram for f . The homology of X0(fa) = f−1(a) can be read off the persistence diagram
of f , as stated in the Interlevel Set Lemma. Specifically, Hp(X0(fa)) is isomorphic to
the vector space whose basis corresponds to Lp[a, a] ∪ Rp+1[a, a]. Similarly, the ho-
mology of Xr(fa) = f−1[a − r, a + r] can be read off the same diagram. By the
One-Point Formula, the well group for r is the intersection of the images of the homol-
ogy maps induced by the inclusions of f−1(a − r) and f−1(a + r) in Xr(fa). By the
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Fig. 3: The triangle design of the extended persistence diagram. The shaded region gives the basis
of H(f−1(a)), while the dark shaded region gives the basis of U(a, r).

Interval Mapping Lemma, this intersection corresponds to a pair of rectangles within
the region of X0(fa); see Figure 3.

A point contributes to the well group until r reaches a value at which the pair of
rectangles no longer contains the point. For a point (x, y) ∈ Lp[a, a], this value of r
is min{a − x, y − a}, and for (x, y) ∈ Rp+1[a, a], this value is min{x − a, a − y}.
The well diagram is the multiset of the values we get from the points in the persistence
diagram.

6 Discussion

The main contribution of this paper is a characterization of the well groups of real-
valued functions and a recipe for deriving their well diagrams from the extended per-
sistence diagram of the function. These results have ramifications in scientific visual-
ization, in particular in the selection and display of isosurfaces. We conclude this paper
by formulating two directions for further research.

The general problem of well group computation remains wide open. One way to
think about this is the following. If we have a mapping f : X → Y from an m-
dimensional topological space X to an n-dimensional topological space Y, and a sub-
manifold A ⊆ Y of dimension k, we call the computation of the well groups a variant
of the (m,n, k) problem. The full version of this paper provides a complete solution
for (m, 1, 0) and (m, 1, 1), when Y = R. In [7], the authors give an algorithm for
(2, 2, 0), when X is an orientable 2-manifold and Y = R2. Their algorithm extends to
(m,n, n−m). Everything else is as yet unsolved.

The use of well diagrams to provide local measures of robustness for isosurfaces is a
promising research direction in scientific visualization. From the extended persistence
diagram drawn as in Figure 3, we obtain a compact representation of all homology
groups and the robustness of their classes. Can this rich representation of information be



effectively used to design transfer functions [9, 13] for highlighting important features
in 3-dimensional data sets?
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