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Abstract

A stratified space is a collection of manifolds of different dimensions which fit together uniformly inside
some larger space. The objective of this paper is to show that data sampled from such a space can be clustered
by strata. We first define a multi-scale notion of stratified spaces, providing a stratification at different scales
which are indexed by a radius parameter. We then use methods derived from kernel and cokernel persistent
homology to cluster the data points into different strata. We prove a correctness guarantee for this clustering
method under certain topological conditions. We then provide a probabilistic guarantee for the clustering for
the point sample setting – we provide bounds on the minimum number of sample points required to state with
high probability which points belong to the same strata. Finally, we give an explicit algorithm for the clustering.



1 Introduction

Manifold learning is a basic problem in geometry, topology, and statistical inference that has received a great deal
of recent attention. One formulation of the problem is: given a point cloud of data sampled from a manifold in
an ambient space RN , infer the dimension and structure of the underlying manifold. A limitation of this problem
statement is that it does not apply to sets that are not manifolds. For example, we may consider the more general
class of stratified spaces that can be decomposed into strata – manifolds of varying dimension each of which fit
together in some uniform way inside the higher dimensional space.

In this paper, we study the following problem in stratification learning: given a point cloud sampled from a
stratified space, how do we cluster points that belong to the same stratum together while keeping points in different
stratum apart. Intuitively, a reasonable strategy would be to place two points in the same piece of stratum if they
“look the same locally” – they have identical neighborhoods within the larger space at some very small scale.
However, the notion of “local” becomes unclear in the context of the uncertainty induced from sampling, since
everything becomes noisy at small scales. In response, we introduce a radius or scale parameter r and define a
notion of local equivalence at each scale r.

We will use tools derived from algebraic topology. In particular, we define local equivalence between points
via maps that transfer information carried by local homology groups, and we then use persistent homology [10]
methods to infer the properties of these maps.
Prior Work. Consistency in manifold learning has often been recast as homology inference – as the number of
points in a point cloud goes to infinity, the homology inferred from the point cloud converges to the true homology
of the underlying space. Results of this nature have been given for manifolds [17, 18] and a large class of compact
subsets of Euclidean space [5]. Stronger results in homology inference for closed subsets of a metric space are
given in [7].

Geometric approaches to stratification learning have also been developed. These include inference of a mixture
of linear subspaces [15], mixture models for general stratified spaces [12], and generalized Principal Component
Analysis (GPCA) [20] which was developed for dimension reduction for mixtures of manifolds.

The study of stratified spaces has long been a focus of pure mathematics; see, for example, [11, 21]. The
problem of inference for the local homology groups of a sampled stratified space in a deterministic setting has
been addressed in [1].
Contributions. In this paper we propose an approach to stratification learning based on local homology inference.
The results in this paper are:

(1) A topological definition of two points belonging to the same strata by assessing the multi-scale local structure
of the points through a local homology transfer map. (Definition 3.1);
(2) Topological conditions on the point sample under which this characterization holds (Theorem 3.2);
(3) Finite sample bounds for the minimum number of points required in the sample to state with high
probability which points belong to the same strata (Theorem 4.1);
(4) An algorithm that computes which points belong to the same strata (Section 5).

2 Background

We first describe general persistence modules [4], focusing mainly on those that arise from maps between absolute
or relative homology groups induced by inclusions of topological spaces or pairs of such spaces. We then discuss
stratifications and their connection to the local homology groups of a topological space. Basics on homology itself
are assumed; for a readable background, see [16] or [13], or [10] for a more computationally oriented treatment.
Persistence modules. For simplicity, our treatment of persistence modules adapted from [4] is restricted to Z/2Z-
vector spaces. Let A be some subset of R. A persistence module FA is a collection {Fα}α∈A of Z/2Z-vector
spaces, together with a family {fβ

α : Fα → Fβ}α≤β∈A of linear maps such that α ≤ β ≤ γ implies fγ
α = fγ

β ◦ f
β
α .

We will assume that the index set A is either R or R≥0 and not explicitly state indices unless necessary.
A real number α is said to be a regular value of the persistence module F if there exists some ε > 0 such that
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the map fα+δ
α−δ is an isomorphism for each δ < ε. Otherwise we say that α is a critical value of the persistence

module; if A = R≥0, then α = 0 will always be considered to be a critical value. We say that F is tame if it
has a finite number of critical values and if all the vector spaces Fα are of finite rank. Any tame R≥0-module F
must have a smallest non-zero critical value ρ(F); we call this number the feature size of the persistence module.
Assume F is tame and so we have a finite ordered list of critical values 0 = c0 < c1 < . . . < cm. We choose
regular values {ai}m

i=0 such that ci−1 < ai−1 < ci < ai for all 1 ≤ i ≤ m, and we adopt the shorthand notation
Fi ≡ Fai and f j

i : Fi → Fj , for 0 ≤ i ≤ j ≤ m. A vector v ∈ Fi is said to be born at level i if v 6∈ im f i
i−1, and

such a vector dies at level j if f j
i (v) ∈ im f j

i−1 but f j−1
i (v) 6∈ im f j−1

i−1 . This is illustrated in Figure 1 (a). We then
define P i,j to be the vector space of vectors that are born at level i and then subsequently die at level j, and let βi,j

denote its rank.
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Figure 1: (a) The vector v is born at level i and then it dies at level j. (b) Commuting diagrams for (co)kernel modules.

Persistence diagrams. The information contained within a tame module F can be compactly represented by a
persistence diagram, Dgm(F), which is a multi-set of points in the extended plane. It contains βi,j copies of the
points (ci, cj), as well as infinitely many copies of each point along the major diagonal y = x. In Figure 2 (a) the
persistence diagrams for a curve and a point cloud sampled from it are displayed, see below for a full explanation
of this figure.

For any two points u = (x, y) and u′ = (x′, y′) in the extended plane, we define ||u − u′||∞ = max{|x −
x′|, |y − y′|}. We define the bottleneck distance between any two persistence diagrams D and D′ to be:

dB(D,D′) = inf
Γ:D→D′

sup
u∈D

||u− Γ(u)||∞,

where Γ ranges over all bijections fromD toD′. Under certain conditions described in the full version, persistence
diagrams are stable under this distance.
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Figure 2: (a) Illustration of a point cloud and its persistence diagram: left, X is the curve embedded as shown in the plane and
U is the point cloud; middle, the persistence diagram Dgm1(dX); right, the persistence diagram Dgm1(dU). The diagrams are
generated by thickening X (or U) while tracking the birth and death of homology classes. (b) Illustration of relative homology
and its persistence diagram: left, the space X is in solid line and the closed ball B has dotted boundary; right, the persistence
diagram for the module {H1(Xα ∩B,Xα ∩ ∂B)}. Here, α goes through four non-zero critical values c1 < c2 < c3 < c4 that
correspond to the four colored level sets, where the points in the persistence diagram correspond to the birth and death of the
four relative homology classes respectively. In particular, α4 is created when the level set at value c2 touches B.

(Co)Kernel modules. Suppose now that we have two persistence modules F and G along with a family of maps
{φα : Fα → Gα} which commute with the module maps – for every pair α ≤ β, we have gβ

α ◦ φα = φβ ◦ fβ
α .

In other words, every square commutes in the diagram shown in Figure 1 (b). Then, for each pair of real numbers
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α ≤ β, the restriction of fβ
α to kerφα maps into kerφβ , giving rise to a new kernel persistence module, with

persistence diagram denoted by Dgm(kerφ). Similarly, we obtain a cokernel persistence module, with diagram
Dgm(cokφ).
Homology and distance functions. Consider a family of topological spaces {Xα}, along with inclusions Xα ↪→
Xβ for all α ≤ β. The inclusions induce maps Hj(Xα) → Hj(Xβ), for each homological dimension j ≥ 0, and
hence we have persistence modules for each j. Defining H(Xα) =

⊕
j Hj(Xα) and taking direct sums of maps in

the obvious way, will also give one large direct-sum persistence module {H(Xα)}.
Given a compact topological space X embedded in some Euclidean space RN , we define dX as the distance

function which maps each point in the ambient space to the distance from its closest point in X. We let Xα denote
the sublevel set d−1

X [0, α]; each sublevel set should be thought of as a thickening of X within the ambient space.
Increasing the thickening parameter produces a growing family of sublevel sets, giving rise to the persistence
module {H(Xα)}α∈R≥0; we denote the persistence diagram of this module by Dgm(dX) and use Dgmj(dX) for
the diagrams of the individual modules for each homological dimension j. In Figure 2 (a), we see an example of
such an X embedded in the plane, along with the persistence diagram Dgm1(dX). We also have the persistence
diagram Dgm1(dU), where U is a dense point sample of X. Note that the two diagrams are quite close in bottleneck
distance. Indeed, the difference between the two diagrams will always be upper-bounded by the Hausdorff distance
between the space and its sample.

We can also have persistence modules of relative homology groups. For example, referring to the left of Figure
2 (b), we let X be the space drawn in solid lines and B the closed ball whose boundary is drawn as a dotted circle.
By restricting dX to B and also to ∂B, we produce pairs of sublevel sets (Xα ∩ B,Xα ∩ ∂B). Using the maps
induced by the inclusions of pairs, we obtain the persistence module {H(Xα ∩ B,Xα ∩ ∂B)}α∈R≥0

of relative
homology groups. The persistence diagram, for homological dimension 1, appears on Figure 2 (b) right. Here,
α goes through four non-zero critical values c1 < c2 < c3 < c4 that correspond to the four level sets, where
the points in the persistence diagrams (Figure 2 (b) right) correspond to the birth and death of the four relative
homology classes respectively.
Stratified spaces. We assume that we have a topological space X embedded in some Euclidean space RN . A
(purely) d-dimensional stratification of X is a decreasing sequence of closed subspaces X = Xd ⊇ Xd−1 ⊇
. . .X0 ⊇ X−1 = ∅, such that for each i, the i-dimensional stratum Si = Xi − Xi−1 is a (possibly empty) i-
manifold. The connected components of Si are called i-dimensional pieces. See Figure 3 (a) for an illustration.

= + + +

(a) (b)

yx

Figure 3: (a) The coarsest stratification of a pinched torus with a spanning disc stretched across the hole. (b) The space in (a)
is a cs-space, where the x and y are respectively in the 0-stratum and the 1-stratum, their neighborhoods are highlighted.

One usually also imposes a requirement to ensure that the various pieces fit together uniformly. There are a
number of different ways this can be done (see [14] for an extensive survey). For example, one might assume that
for each x ∈ Si, there exists a small enough neighborhood N(x) ⊆ X and a (d − i − 1)-dimensional stratified
space Lx such that N(x) is stratum-preserving homeomorphic to the product of an i-ball and the cone on Lx; one
can then show that the space Lx depends only on the particular piece containing x. This definition, formally known
as a cs-space, is illustrated in Figure 3 (b). Since the topology on X is that inherited from the ambient space, this
neighborhood N(x) will take the form X ∩ Br(x), where Br(x) is a small enough ball around x in the ambient
space.

We note that the above definition requires all strata to be contained within the closure of the top-dimensional
stratum. It is also possible, of course, to have spaces where this is not the case: for example, a two-dimensional
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plane that has been punctured by a line. In this case, a slight adjustment to the above definitions can be made in
order to impose similar notions of uniformity.
Local homology and homology stratifications. Recall ([16]) that the local homology groups of a space X at a
point x ∈ X are the groups Hi(X,X− x) in each homological dimension i. If X happens to be a d-manifold, or if
x is simply a point in the top-dimensional stratum of a d-dimensional stratification, then these groups are rank one
in dimension d and trivial in all other dimensions. On the other hand, the local homology groups for lower-stratum
points can be more interesting; for example if x is the crossing point in Figure 2 (b), then H1(X,X − x) has rank
three.

If x and y are close enough points in a particular piece of the same stratum, then there is a natural isomorphism
between their local homology groups H(X,X − x) ∼= H(X,X − y), which can be understood in the following
manner. Taking a small enough radius r and using excision, we see that the two local homology groups in question
are in fact just H(X∩Br(x),X∩∂Br(x)) and H(X∩Br(y),X∩∂Br(y)). Both of these groups will then map, via
intersection of chains, isomorphically into the group H(X∩Br(x)∩Br(y), ∂(Br(x)∩Br(y)), and the isomorphism
above is then derived from these two maps. In [19], the authors define the concept of a homology stratification of a
space X. Briefly, they require a decomposition of X into pieces such that the locally homology groups are locally
constant across each piece; more precisely, that the maps discussed above be isomorphisms for each pair of close
enough points in each piece.

3 Topological Inference Theorem

From the discussion above, it is easy to see that any stratification of a topological space will also be a homology
stratification. The converse is unfortunately false. However, we can build a useful analytical tool based on the
contrapositive: given two points in a point cloud, we can hope to state, based on their local homology groups and
the maps between them, that the two points should not be placed in the same piece of any stratification. To do this,
we first adapt the definition of these local homology maps into a more multi-scale and robust framework. More
specifically, we introduce a radius parameter r and a notion of local equivalence, ∼r, which allows us to group
the points of X, as well as of the ambient space, into strata at this radius scale. We then give the main result of
this section: topological conditions under which the point cloud U can be used to infer the strata at different radius
scales.

3.1 Local Equivalence

Local homology intersection map. We assume that we are given some topological space X embedded in some
Euclidean space in RN . For each radius r ≥ 0, and for each pair of points p, q ∈ RN , we define the following
homology map φX(p, q, r):

H(X ∩Br(p),X ∩ ∂Br(p)) → H(X ∩Br(p) ∩Br(q),X ∩ ∂(Br(p) ∩Br(q))). (1)

Intuitively, this map can be understood as taking a chain, throwing away the parts that lie outside the smaller range,
and then modding out the new boundary. Alternatively, one may think of it as being induced by a combination of
inclusion and excision; for a formal and technical definition, see [2].

For example, consider the space X drawn in the plane as shown in Figures 4 (a), (b), and (c). For each pair
(p, q) of points shown in the three parts of the figure, we let f = φX(p, q, r) and g = φX(q, p, r). Then the
points p and q are considered to have the same local structure if f and g are both isomorphisms; equivalently, if
ker f = cok f = 0 and if ker g = cok g = 0. In part (a), ker (f) 6= 0, since the classes α2 and α3 go to zero
when passing to the intersection. In part (b), there is a class γ2 ∈ cok f . The maps f and g in part (c) are both
isomorphisms.

Returning to the general case, we use these maps to impose an equivalence relation on RN .

Definition 3.1 (Local equivalence). Two points x and y are said to have equivalent local structure at radius r,
denoted x ∼r y, iff there exists a chain of points x = x0, x1, . . . , xm = y from X such that, for each 1 ≤ i ≤ m,
the maps φX(xi−1, xi, r) and φX(xi, xi−1, r) are both isomorphisms.
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Figure 4: Let f = φX(p, q, r) and g = φX(q, p, r). The local homology classes are labeled in their corresponding locations.
(a) p and q do not have the same local structure at radius r since ker f 6= 0. (b) p and q do not have the same local structure at
radius r since cok f 6= 0. (c) p and q have the same local structure at radius r since ker f = cok f = 0 and ker g = cok g = 0.

In other words, x and y have the same local structure at this radius iff they can be connected by a chain of points
which are pairwise close enough and whose local homology groups at radius r transfer isomorphically into each
other via the intersection maps.

Different choices of r will of course lead to different equivalence classes. For example, consider the space X
drawn in the plane as shown in the left half of Figure 5 (a). At the radius drawn, point z is equivalent to the cross
point and is not equivalent to either the point x or y. Note that some points from the ambient space will now be
considered equivalent to x and y, and some others will be equivalent to z. On the other hand, a smaller choice of
radius would result in all three of x, y, and z belonging to the same equivalence class.
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Figure 5: (a) Illustration of equivalence relation: left, x ∼r y, y �r z; right, the 1-dim persistence diagram, for the kernel
of the map going from the z ball into its intersection with the y ball. A number, i.e., #2, labeling a point in the persistence
diagram indicates its multiplicity. (b) Regions in X-diagrams and U-diagrams. The point in the X-diagrams lie either along
the solid black line or in the darkly shaded region. Adding the lightly shaded regions, we get the region of possible points in
the U-diagrams.

(Co)Kernel persistence. In order to relate the point cloud U to the equivalence relation ∼r, we must first define a
multi-scale version of the maps φX(p, q, r); we do so by gradually thickening the space X using the sublevel sets
of its distance function. For each p, q ∈ RN and r, α ≥ 0, we will consider the intersection map φX

α(p, q, r), which
is defined by substituting Xα for X in (1). Note of course that φX(p, q, r) = φX

0 (p, q, r).

For the moment, we fix a choice of p, q, and r, and we use the following shorthand, BX
p (α) = Xα ∩ Br(p),

∂BX
p (α) = Xα ∩ ∂Br(p), BX

pq(α) = Xα ∩ Br(p) ∩ Br(q), ∂BX
pq(α) = Xα ∩ ∂(Br(p) ∩ Br(q)), and we also

often write BX
p = BX

p (0) and BX
pq = BX

pq(0). By replacing X with U in this shorthand, we also write BU
p (α) =

Uα ∩Br(p), and so forth.

For any pair of non-negative real values α ≤ β the inclusion Xα ↪→ Xβ gives rise to the following commutative
diagram:
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H(BX
p (α), ∂BX

p (α))
φX

α−→ H(BX
pq(α), ∂BX

pq(α))

↓ ↓

H(BX
p (β), ∂BX

p (β))
φX

β−→ H(BX
pq(β), ∂BX

pq(β)) (2)

Hence there are maps kerφX
α → kerφX

β and cokφX
α → cokφX

β . Allowing α to increase from 0 to ∞ gives rise
to two persistence modules, {kerφX

α} and {cokφX
α}, with diagrams Dgm(kerφX) and Dgm(cokφX). Recall that

a homomorphism is an isomorphism iff its kernel and cokernel are both zero. In our context then, the map φX is
an isomorphism iff neither Dgm(kerφX) nor Dgm(cokφX) contain any points on the y-axis above 0.
Example. As shown in the left part of Figure 5 (a), x, y, and z are points sampled from a cross embedded in the
plane. Taking r as drawn, the right part of Figure 5 (a) displays Dgm1(kerφX), where φX = φX(z, y, r); we now
explain this diagram in some detail. The group H1(BX

z , ∂B
X
z ) has rank three; as a possible basis we might take the

three local homology classes represented by α1, α2, and α3, which are pairs of segments defining the northwest-
facing right angle, the northeast-facing right angle, and the southeast-facing right angle. Under the intersection
map φX = φX

0 , the first of these classes α1 maps to the generator of H1(BX
zy, ∂B

X
zy), while the other two map

to zero. Hence kerφX
0 has rank two. As X starts to thicken into the ambient space, both classes in this kernel

eventually die, one at the α value which fills in the northeast corner of the larger ball, and the other at the α value
which fills in the southeast corner; these two values are the same here due to symmetry in the picture. At this value,
the map φX

α becomes an isomorphism and it remains so until the intersection of the two balls fills in completely.
This gives birth to a new kernel class which subsequently dies when the larger ball finally fills in. The diagram
Dgm1(kerφX) thus contains three points; the leftmost two show that the map φX is not an isomorphism, and thus
that z and y do not have the same local structure at the chosen radius level.

3.2 Topological Inference Theorem

Given a point cloud U sampled from X, we consider the following question: for a radius r, how can we infer
whether or not any given pair of points in U has the same local structure at this radius? In this subsection, we
prove a theorem which describes the circumstances under which we can make the above inference. Naturally, any
inference will require that we use U to judge whether or not the maps φX(p, q, r) are isomorphisms. The basic
idea is that if U is a dense enough sample of X, then the (co)kernel diagrams defined by U will be good enough
approximations of the diagrams defined by X.
(Co)Kernel stability. Again we fix p, q, and r, and write φX = φX(p, q, r). For each α ≥ 0, we let Uα = d−1

U [0, α].
We consider φU

α = φU
α(p, q, r), defined by replacing X with Uα in (1), as

H(Uα ∩Br(p),Uα ∩ ∂Br(p)) → H(Uα ∩Br(p) ∩Br(q),Uα ∩ ∂(Br(p) ∩Br(q))). (3)

Running α from 0 to ∞, we obtain two more persistence modules, {kerφU
α} and {cokφU

α}, with diagrams
Dgm(kerφU) and Dgm(cokφU).

If U is a dense enough sample of X, then the (co)kernel diagrams defined by U will be good approximations of
the diagrams defined by X. More precisely, we have the following theorem, see the full version for the proof.

Theorem 3.1 ((Co)Kernel Diagram Stability). The bottleneck distances between the (co)kernel diagrams of φU

and φX are upper-bounded by the Hausdorff distance between U and X:
dB(Dgm(kerφU),Dgm(kerφX)) ≤ dH(U,X), dB(Dgm(cokφU),Dgm(cokφX)) ≤ dH(U,X).

Main inference result. We now suppose that we have a point sample U of a space X, where the Hausdorff
distance between the two is no more than some ε. In this case, we call U an ε-approximation of X. Given two
points p, q ∈ U and a fixed radius r, we set φX = φX(p, q, r), and we wish to determine whether or not φX is an
isomorphism. Since we only have access to the point sample U, we instead compute the diagrams Dgm(kerφU)
and Dgm(cokφU); we provide an algorithm for doing this in Section 5.

Given any persistence diagramD, which we recall is a multi-set of points in the extended plane, and two positive
real numbers a < b, we let D(a, b) denote the intersection of D with the portion of the extended plane which lies
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above y = b and to the left of x = a; note that these points correspond to classes which are born no later than a
and die no earlier than b.

For a fixed choice of p, q, r, we consider the following two persistence modules: {H(BX
p (α), ∂BX

p (α))} and
{H(BX

pq(α), ∂BX
pq(α))}. We let σ(p, r) and σ(p, q, r) denote their respective feature sizes and then set ρ(p, q, r) to

their minimum. Geometrically, ρ(p, q, r) is related to a local reach and the gradient of dX (as detailed in [2]).
We now give the main theorem of this section, which states that we can use U to decide whether or not φX(p, q, r)

is an isomorphism as long as ρ(p, q, r) is large enough relative to the sampling density, see the full version for its
proof.

Theorem 3.2 (Topological Inference Theorem). Suppose that we have an ε-approximation U from X. Then for
each pair of points p, q ∈ RN such that ρ = ρ(p, q, r) ≥ 4ε, the map φX = φX(p, q, r) is an isomorphism iff
Dgm(kerφU)(ε, 3ε) ∪Dgm(cokφU)(ε, 3ε) = ∅.

qp qp

birth

de
at
h

0

#2

(ε, 3ε)

(a) (b) (c)
Figure 6: (a) Space X is the black cross, with p, q, r as drawn. (b) Space U is an ε-approximation of X. (c) The kernel
persistence diagram of φX(p, q, r) (X-diagram) is shown to contain black empty points; the kernel diagram of φU(p, q, r)
(U-diagram) is shown to contain red filled points. Suppose only U is given, we can use U-diagram to infer that points p and q
are not locally equivalent.

Figure 5 (b) illustrates Theorem 3.2, that is, under certain topological conditions, φX is an isomorphism if and
only if certain regions in the U-diagrams are empty. For example, suppose X is the cross shown in Figure 6 (a),
with p, q, r as drawn. p and q are locally different at this radius level, as shown by the presence of two black empty
points on the y-axis of the kernel persistence X-diagram (Figure 6 (c)). Suppose X is unknown and we are only
given U, an ε-approximation of X (Figure 6 (b)). From the kernel U-diagram, which has two points in the relevant
rectangle, we can infer that p and q do not have the same local structure at radius level r by applying Theorem 3.2.

4 Probabilistic Inference Theorem

The topological inference of Section 3 states conditions under which the point sample U can be used to infer
stratification properties of the space X. The basic condition is that the Hausdorff distance between the two must
be small. In this section we describe a probabilistic model for generating the point sample U, and we provide an
estimate of how large this point sample should be to infer stratification properties of the space X with a quantified
measure of confidence. More specifically, we provide a local estimate, based on ρ(p, q, r) and ρ(q, p, r), of how
many sample points are needed to infer the local relationship at radius level r between two fixed points p and q;
this same theorem can be used to give a global estimate of the number of points needed for inference between any
pair of points whose ρ-values are above some fixed low threshold.
Sampling strategy. We assume X to be compact. Since the stratified space X can contain singularities and
maximal strata of varying dimensions, some care is required in the sampling design. Consider for example a sheet
of area one, punctured by a line of length one. In this case, sampling from a naively constructed uniform measure
on this space would result in no points being drawn from the line. This same issue arose and was dealt with in
[18], although in a slightly different approach than we will develop.

A sampling strategy that will deal with the problem of varying dimensions is to use a mixture model. In the
example of the sheet and line, a uniform measure would be placed on the sheet, while another uniform measure
would be placed on the line, and a mixture probability is placed on the two measures; for example, each measure
could be drawn with probability 1/2. We now formalize this approach. Consider each (non-empty) i-dimensional
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stratum Si = Xi − Xi−1 of X. All strata that are included in the closure of some higher-dimensional strata, in
other words all non-maximal strata, are not considered in the model. A uniform measure is assigned to the closure
of each maximal stratum, µi(Si), this is possible since each such closure is compact. We assume a finite number
of maximal strata K and assign to the closure of each such stratum a probability pi = 1/K. This implies the
following density f(x) = 1

K

∑K
j=1 νi(X = x), where νi is the density corresponding to measure µi. The point

sample is generated from the following model: U = {x1, ..., .xn}
iid∼ f(x). We call this model M .

Lower bounds on the sample size of the point cloud. Our main theorem is the probabilistic analogue of Theorem
3.2. An immediate consequence of this theorem is that, for two points p, q ∈ U, we can infer with probability at
least 1− ξ whether p and q are locally equivalent, p ∼r q. The confidence level 1− ξ will be a monotonic function
of the size of the point sample. The theorem involves a parameter v(ρ), for each positive ρ, which is based on the
volume of the intersection of ρ-balls with X. First we note that each maximal stratum of X comes with its own
notion of volume: in the plane punctured by a line example, we measure volume in the plane and in the line as area
and length, respectively. The volume vol (Y) of any subspace Y of X is the sum of the volumes of the intersections
of Y with each maximal stratum. For ρ > 0, we define v(ρ) = infx∈X

vol (Bρ/32(x)∩X)

vol (X) . We then have our main
theorem, whose proof appears in the full version:

Theorem 4.1 (Local Probabilistic Sampling Theorem). Let {x1, x2, ..., xn} be drawn from modelM . Fix a pair of
points p, q ∈ RN and a positive radius r, and put ρ = min{ρ(p, q, r), ρ(q, p, r)}. If n ≥ 1

v(ρ)

(
log 1

v(ρ) + log 1
ξ

)
,

then, with probability greater than 1− ξ we can correctly infer whether or not φX(p, q, r) and φX(q, p, r) are both
isomorphisms.

To extend the above theorem to a more global result, one can pick a positive ρ and radius r, and consider the set
of all pairs of points (p, q) such that ρ ≤ min{ρ(p, q, r), ρ(q, p, r}. Applying Theorem 4.1 uniformly to all pairs
of points will give the minimum number of sample points needed to settle the isomorphism question for all of the
intersection maps between all pairs.

5 Algorithm

The theorems in the previous sections give conditions under which a point cloud U, sampled from a stratified space
X, can be used to infer the local equivalences between points on X. We now switch gears slightly, and imagine
clustering the U-points into strata. The basic strategy is to build a graph on the point set, with edges corresponding
to positive isomorphism judgments. The connected components of this graph will then be our proposed strata. A
crucial subroutine in the clustering algorithm is the computation of the diagrams Dgm(kerφU) and Dgm(cokφU),
for φU = φU(p, q, r) between all pairs (p, q) ∈ U×U. We will focus our attention in this section on the computation
of the (co)kernel diagrams, for details on the entire algorithm and its robustness see the full version.

To compute the diagrams Dgm(kerφU) and Dgm(cokφU) we require for each α ≥ 0 a simplicial analogue
of the map φU

α : H(BU
p (α), ∂BU

p (α)) → H(BU
pq(α), ∂BU

pq(α)). We define, for each α ≥ 0 (a) two pairs of
simplicial complexes L0(α) ⊆ L(α) and K0(α) ⊆ K(α), and (b) a relative homology map between them
ψα : H(L(α), L0(α)) → H(K(α),K0(α)). In the full version, we give a correctness proof that Dgm(kerφU) =
Dgm(kerψ) and Dgm(cokφU) = Dgm(cokψ).

5.1 Preliminaries

To construct the simplicial complexes in our algorithm, we will compute Voronoi diagrams and nerves of sets of
collections derived from these Voronoi diagrams.
Voronoi diagram. Given a finite collection U of points in RN and ui ∈ U, then the Voronoi cell of ui is defined to
be:

Vi = V (ui) = {x ∈ RN | ||x− ui|| ≤ ||x− uj ||,∀uj ∈ U}.
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The set of cells Vi covers the entire space and forms the Voronoi diagram of RN , denoted as Vor (U|RN ). If we
restrict each Vi to some subset X ⊆ RN , then the set of cells Vi ∩ X forms a restricted Voronoi diagram, denoted
as Vor (U|X). For a simplex σ with vertices in U, we set Vσ = ∩ui∈σVi.

Nerves. The nerveN(C) of a finite collection of sets C is defined to be the abstract simplicial complex with vertices
corresponding to the sets in C and with simplices corresponding to all non-empty intersections among these sets,
N(C) = {S ⊆ C |

⋂
S 6= ∅}. Every abstract simplicial complex can be geometrically realized, and therefore

the concept of homotopy type makes sense. Under certain conditions, for example whenever the sets in C are all
closed and convex subsets of Euclidean space ([10], p.59), the nerve of C has the same homotopy type, and thus
the same homology groups, as the union of sets in C. This implies we can compute H(Uα), the absolute homology
of the thickened point cloud, by computing the nerve of the collection of sets Vi ∩ Uα.

The nerve of the restricted Voronoi diagram Vor (U|X) is called the restricted Delaunay triangulation, denoted
as Del (U|X). It contains the set of simplices σ for which Vσ ∩ X 6= ∅.

Power cells, lunes, and moons. We need to compute the relative homology groups H(BU
p (α), ∂BU

p (α)) and
H(BU

pq(α), ∂BU
pq(α)). The direct argument used to compute absolute homology based on the nerve does not apply

to computing relative homology groups since the collection of the sets Vi ∩ ∂BU
p (α) and Vi ∩ ∂BU

pq(α) need not
be convex.

To get around this problem, we first define the power cell with respect to Br(p), P (α), as P (α) = {x ∈
RN | ||x − p||2 − r2 ≤ ||x − u||2 − α2,∀u ∈ U}, and we set P0(α) = Br(p) − intP (α). Replacing p with
q in this formula gives Q(α), the power cell with respect to Br(q). Finally, we set Z(α) = P (α) ∩ Q(α), and
Z0(α) = (Br(p)∩Br(q))− intZ(α). These definitions are illustrated in Figure 7 (a). Note that P0(α) and Z0(α)
are both contained in Uα.

p

q

P (α) Q(α)

Z(α)

p q

Mq

Lq

p q

Mp

Lp

(a)

(b)

P

Figure 7: (a) Illustration of intersection power cell Z(α), as the grey shaded region. The unshaded convex regions are P (α)
and Q(α) respectively. The dark pink and black shaded regions (pointed by single and double arrows) correspond to P0(α)
and Q0(α) respectively. (b) Illustration of the lune and the moon. The shaded regions are the respective moons. The white
regions within solid circles are the respective lunes.

It turns out that replacing ∂BU
p (α) with P0(α) and ∂BU

pq(α) with Z0(α) has no effect on the relative homology
groups in question. That is, the spaces (BU

p (α), ∂BU
p (α)) and (BU

p (α), P0(α)) are homotopy equivalent, so are
the spaces (BU

pq(α), ∂BU
pq(α)) and (BU

pq(α), Z0(α)). Consequently, their homology groups are isomorphic. The
first part of this statement was proven in [1], and a proof of the second appears in [2]. The sets Vi ∩ P0(α) are
convex [1]. Unfortunately, it is still possible for Vi ∩Z0(α) to be non-convex, which requires a further subdivision
of the Voronoi cells by bisection. Consider the hyperplane P of points in RN which are equidistant from p and q.
This will divide RN into two half-spaces with Pp and Pq denoting the half-spaces containing p and q. Given Pp

we define the p-lune, Lp, and p-moon, Mp, as follows (see Figure 7 (b)): Lp = Pq ∩Br(p),Mp = Pp ∩Br(p).

The lune and the moon divide each Voronoi cell into two parts, V L
i = Vi ∩ Lp and V M

i = Vi ∩Mp. These sets
are obviously convex, assuming they are non-empty, since they are each the intersection of two convex sets. It also
turns out that the non-empty sets among V L

i ∩ Z0(α) and V M
i ∩ Z0(α) are convex; see [2] for a proof.
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5.2 Algorithm to compute simplicial analogues

Our algorithm to compute simplicial analogues contains two steps: (a) defining the simplicial complexes and (b)
defining the corresponding relative homology simplicial maps. We first define the pairs of simplicial complexes
L0(α) ⊆ L(α) and K0(α) ⊆ K(α). Set A to be the collection of the non-empty sets among V L

i ∩ BU
p (α) and

V M
i ∩ BU

p (α). Define A0 as the collection of the nonempty sets among V L
i ∩ P0(α) and V M

i ∩ P0(α). Note
that ∪A = BU

p (α) and ∪A0 = P0(α). Taking the nerve of both collections, we define the simplicial complexes
L(α) = N(A) and L0(α) = N(A0). Similarly, we define C and C0 to be the collections of the non-empty sets
among, respectively, V L

i ∩BU
pq(α) and V M

i ∩BU
pq(α), and V L

i ∩Z0(α) and V M
i ∩Z0(α). We define K(α) = N(C)

and K0(α) = N(C0). See Figure 8 for an example of the simplicial complexes constructed in R2 for a given U.
To demonstrate how our algorithm works, we test it on synthetic data shown in the full version.

u1

u2

p q

Figure 8: Illustration of the simplicial complexes constructed around two points p and q. The underlying Voronoi decompo-
sition of the space is shown in thin dotted lines. u1 and u2 in U are the points whose restricted Voronoi regions intersect with
the lune at non-convex regions.

To define the maps ψα : H(L(α), L0(α)) → H(K(α),K0(α)) we need the following technical lemma:
Lemma 5.1 (Containment Lemma). Assume that a simplex σ is in L0(α). If σ is also inK(α), then σ is inK0(α),
as well, see the full version for the proof.

To define ψα, we first construct a chain map g = gα : C(L(α)) → C(K(α)) as follows. Given a simplex
σ ∈ L(α), we define g(σ) = σ if σ ∈ K(α), and g(σ) = 0 otherwise; we then extend g to a chain map by
linearity. Using the Containment Lemma, we see that g(C(L0(α))) ⊆ C(K0(α)), and thus g descends to a relative
chain map f = fα : C(L(α), L0(α)) → C(K(α),K0(α)). Since f clearly commutes with all boundary operators,
it induces a map on relative homology, this is our ψ = ψα. To compute the diagrams involving ψ, we reduce
various boundary matrices via (co)kernel persistence algorithm described in [8], in time at most cubic in the size
of the simplicial complexes representing the data.

6 Discussion
We have presented a first step towards learning stratified spaces. There are several open issues of interest includ-
ing: algorithmic efficiency and scaling with dimension using Rips or Witness complexes [9] instead of Delaunay
triangulation, robustness of the algorithm and weighting local equivalence, and extensions to the noisy setting [17]
when the mixture is concentrated around the stratified space.

Specifically, the algorithm to compute the (co)kernel diagrams from the thickened point cloud is based on an
adaption of Delaunay triangulation and the power-cell construction. This algorithm should be quite slow when the
dimensionality of the ambient space is high due to the runtime complexity of Delaunay triangulation. One idea to
address this bottleneck is to use Rips or Witness complexes [9]. Another approach is to use dimension reduction
techniques such as principal components analysis (PCA) or random projection that approximately preserve distance
[6] as a preprocessing step. Another idea that may work if the ambient dimension is not too high is using faster
algorithms to construct Delaunay triangulations [3].
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Abstract

A stratified space is a collection of manifolds of different dimensions which fit together uniformly inside
some larger space. The objective of this paper is to show that data sampled from such a space can be clustered
by strata. We first define a multi-scale notion of stratified spaces, providing a stratification at different scales
which are indexed by a radius parameter. We then use methods derived from kernel and cokernel persistent
homology to cluster the data points into different strata. We prove a correctness guarantee for this clustering
method under certain topological conditions. We then provide a probabilistic guarantee for the clustering for
the point sample setting – we provide bounds on the minimum number of sample points required to state with
high probability which points belong to the same strata. Finally, we give an explicit algorithm for the clustering.



1 Introduction

Manifold learning is a basic problem in geometry, topology, and statistical inference that has received a great deal
of recent attention. One formulation of the problem is: given a point cloud of data sampled from a manifold in
an ambient space RN , infer the dimension and structure of the underlying manifold. A limitation of this problem
statement is that it does not apply to sets that are not manifolds. For example, we may consider the more general
class of stratified spaces that can be decomposed into strata – manifolds of varying dimension each of which fit
together in some uniform way inside the higher dimensional space.

In this paper, we study the following problem in stratification learning: given a point cloud sampled from a
stratified space, how do we cluster points that belong to the same stratum together while keeping points in different
stratum apart. Intuitively, a reasonable strategy would be to place two points in the same piece of stratum if they
“look the same locally” – they have identical neighborhoods within the larger space at some very small scale.
However, the notion of “local” becomes unclear in the context of the uncertainty induced from sampling, since
everything becomes noisy at small scales. In response, we introduce a radius or scale parameter r and define a
notion of local equivalence at each scale r.

We will use tools derived from algebraic topology. In particular, we define local equivalence between points
via maps that transfer information carried by local homology groups, and we then use persistent homology [14]
methods to infer the properties of these maps.
Prior Work. Consistency in manifold learning has often been recast as homology inference – as the number of
points in a point cloud goes to infinity, the homology inferred from the point cloud converges to the true homology
of the underlying space. Results of this nature have been given for manifolds [25, 26] and a large class of compact
subsets of Euclidean space [7]. Stronger results in homology inference for closed subsets of a metric space are
given in [11].

Geometric approaches to stratification learning have also been developed. These include inference of a mixture
of linear subspaces [22], mixture models for general stratified spaces [18], and generalized Principal Component
Analysis (GPCA) [28] which was developed for dimension reduction for mixtures of manifolds.

The study of stratified spaces has long been a focus of pure mathematics; see, for example, [17, 29]. The
problem of inference for the local homology groups of a sampled stratified space in a deterministic setting has
been addressed in [3].
Contributions. In this paper we propose an approach to stratification learning based on local homology inference.
The results in this paper are:

(1) A topological definition of two points belonging to the same strata by assessing the multi-scale local structure
of the points through a local homology transfer map. (Definition 3.1);
(2) Topological conditions on the point sample under which this characterization holds (Theorem 3.2);
(3) Finite sample bounds for the minimum number of points required in the sample to state with high
probability which points belong to the same strata (Theorem 4.1);
(4) An algorithm that computes which points belong to the same strata (Section 5).

2 Background

We first describe general persistence modules [6], focusing mainly on those that arise from maps between absolute
or relative homology groups induced by inclusions of topological spaces or pairs of such spaces. We then discuss
stratifications and their connection to the local homology groups of a topological space. Basics on homology itself
are assumed; for a readable background, see [24] or [19], or [14] for a more computationally oriented treatment.
Persistence modules. For simplicity, our treatment of persistence modules adapted from [6] is restricted to Z/2Z-
vector spaces. Let A be some subset of R. A persistence module FA is a collection {Fα}α∈A of Z/2Z-vector
spaces, together with a family {fβ

α : Fα → Fβ}α≤β∈A of linear maps such that α ≤ β ≤ γ implies fγ
α = fγ

β ◦ f
β
α .

We will assume that the index set A is either R or R≥0 and not explicitly state indices unless necessary.
A real number α is said to be a regular value of the persistence module F if there exists some ε > 0 such that
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the map fα+δ
α−δ is an isomorphism for each δ < ε. Otherwise we say that α is a critical value of the persistence

module; if A = R≥0, then α = 0 will always be considered to be a critical value. We say that F is tame if it
has a finite number of critical values and if all the vector spaces Fα are of finite rank. Any tame R≥0-module F
must have a smallest non-zero critical value ρ(F); we call this number the feature size of the persistence module.
Assume F is tame and so we have a finite ordered list of critical values 0 = c0 < c1 < . . . < cm. We choose
regular values {ai}m

i=0 such that ci−1 < ai−1 < ci < ai for all 1 ≤ i ≤ m, and we adopt the shorthand notation
Fi ≡ Fai and f j

i : Fi → Fj , for 0 ≤ i ≤ j ≤ m. A vector v ∈ Fi is said to be born at level i if v 6∈ im f i
i−1, and

such a vector dies at level j if f j
i (v) ∈ im f j

i−1 but f j−1
i (v) 6∈ im f j−1

i−1 . This is illustrated in Figure 1 (a). We then
define P i,j to be the vector space of vectors that are born at level i and then subsequently die at level j, and let βi,j

denote its rank.

v

Fi−1 Fi Fj−1 Fj

f j
j−1

f i
i−1 f j−1

i imf j−1

i−1
imf i

i−1

(a) (b)

Gα

Fα Fβ

Gβ
g

β
α

fβ
α

. . .

. . .

. . .

. . .

φα φβ

Figure 1: (a) The vector v is born at level i and then it dies at level j. (b) Commuting diagrams for (co)kernel modules.

Persistence diagrams. The information contained within a tame module F can be compactly represented by a
persistence diagram, Dgm(F), which is a multi-set of points in the extended plane. It contains βi,j copies of the
points (ci, cj), as well as infinitely many copies of each point along the major diagonal y = x. In Figure 3 (a) the
persistence diagrams for a curve and a point cloud sampled from it are displayed, see below for a full explanation
of this figure.

For any two points u = (x, y) and u′ = (x′, y′) in the extended plane, we define ||u − u′||∞ = max{|x −
x′|, |y − y′|}. We define the bottleneck distance between any two persistence diagrams D and D′ to be:

dB(D,D′) = inf
Γ:D→D′

sup
u∈D

||u− Γ(u)||∞,

where Γ ranges over all bijections from D to D′. Under certain conditions which we now describe, persistence
diagrams will be stable under the bottleneck distance.

Two persistence modules F and G are said to be strongly ε-interleaved if, for some positive ε, there exist two
families {ξα : Fα → Gα+ε}α and {ψα : Gα → Fα+ε} of linear maps which commute with the module maps {fβ

α}
and {gβ

α} in the appropriate manner. More precisely, we require that, for each α ≤ β, the four diagrams in Figure
2 all commute.

Fα−ε
Fβ+ε

Gβ+εGα−ε

Gα

Fα Fβ

Gβ

fβ+ε
α−ε

g
β+ε
α−ε

g
β
α

fβ
α

ξα−ε

ψα−ε

ψβ

ξβ

Fα+ε
Fβ+ε

Gβ+εGα+ε

ξα

ψα ψβ

ξβ

fβ+ε
α+ε

g
β+ε
α+ε

Gα Gβ

g
β
α

Fα Fβ

fβ
α

Figure 2: Commuting diagrams for strongly interleaving persistence modules.

We can now state the diagram stability result ([6], Theorem 4.4), that we will need below.

Theorem 2.1 (Diagram Stability Theorem). Let F and G be two tame persistence modules and ε > 0. If F and G
are strongly ε-interleaved, then dB(Dgm(F),Dgm(G)) ≤ ε.
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When we wish to compute the persistence diagram associated to a module F , it is often convenient to substitute
another module G, usually one defined in terms of simplicial complexes or other computable objects. The following
theorem ([14], p.159) gives a condition under which this is possible.

Theorem 2.2 (Persistence Equivalence Theorem). Given two persistence modules F and G, suppose there exist
for each α isomorphisms Fα

∼= Gα which commute with the module maps, then Dgm(F) = Dgm(G).

That is, if all the vertical maps are isomorphisms and all squares commute in the following diagram, then
Dgm(F) = Dgm(G).

. . .→Fα → Fβ → . . .

↑∼= ↑∼=
. . .→Gα → Gβ → . . .

birth

de
at
h

0birth

de
at
h

0 birth

de
at
h

0

(a) (b)

α1

α2 α3

α4

(0, c1)

(0, c3)

(0, c4)

(c2, c3)

α1

α2

α4

α3

Figure 3: (a) Illustration of a point cloud and its persistence diagram: left, X is the curve embedded as shown in the plane and
U is the point cloud; middle, the persistence diagram Dgm1(dX); right, the persistence diagram Dgm1(dU). The diagrams are
generated by thickening X (or U) while tracking the birth and death of homology classes. (b) Illustration of relative homology
and its persistence diagram: left, the space X is in solid line and the closed ball B has dotted boundary; right, the persistence
diagram for the module {H1(Xα ∩B,Xα ∩ ∂B)}. Here, α goes through four non-zero critical values c1 < c2 < c3 < c4 that
correspond to the four colored level sets, where the points in the persistence diagram correspond to the birth and death of the
four relative homology classes respectively. In particular, α4 is created when the level set at value c2 touches B.

(Co)Kernel modules. Suppose now that we have two persistence modules F and G along with a family of maps
{φα : Fα → Gα} which commute with the module maps – for every pair α ≤ β, we have gβ

α ◦ φα = φβ ◦ fβ
α .

In other words, every square commutes in the diagram shown in Figure 1 (b). Then, for each pair of real numbers
α ≤ β, the restriction of fβ

α to kerφα maps into kerφβ , giving rise to a new kernel persistence module, with
persistence diagram denoted by Dgm(kerφ). Similarly, we obtain a cokernel persistence module, with diagram
Dgm(cokφ).
Homology and distance functions. Consider a family of topological spaces {Xα}, along with inclusions Xα ↪→
Xβ for all α ≤ β. The inclusions induce maps Hj(Xα) → Hj(Xβ), for each homological dimension j ≥ 0, and
hence we have persistence modules for each j. Defining H(Xα) =

⊕
j Hj(Xα) and taking direct sums of maps in

the obvious way, will also give one large direct-sum persistence module {H(Xα)}.
Given a compact topological space X embedded in some Euclidean space RN , we define dX as the distance

function which maps each point in the ambient space to the distance from its closest point in X. We let Xα denote
the sublevel set d−1

X [0, α]; each sublevel set should be thought of as a thickening of X within the ambient space.
Increasing the thickening parameter produces a growing family of sublevel sets, giving rise to the persistence
module {H(Xα)}α∈R≥0; we denote the persistence diagram of this module by Dgm(dX) and use Dgmj(dX) for
the diagrams of the individual modules for each homological dimension j. In Figure 3 (a), we see an example of
such an X embedded in the plane, along with the persistence diagram Dgm1(dX). We also have the persistence
diagram Dgm1(dU), where U is a dense point sample of X. Note that the two diagrams are quite close in bottleneck
distance. Indeed, the difference between the two diagrams will always be upper-bounded by the Hausdorff distance
between the space and its sample.
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We can also have persistence modules of relative homology groups. For example, referring to the left of Figure
3 (b), we let X be the space drawn in solid lines and B the closed ball whose boundary is drawn as a dotted circle.
By restricting dX to B and also to ∂B, we produce pairs of sublevel sets (Xα ∩ B,Xα ∩ ∂B). Using the maps
induced by the inclusions of pairs, we obtain the persistence module {H(Xα ∩ B,Xα ∩ ∂B)}α∈R≥0

of relative
homology groups. The persistence diagram, for homological dimension 1, appears on Figure 3 (b) right. Here,
α goes through four non-zero critical values c1 < c2 < c3 < c4 that correspond to the four level sets, where
the points in the persistence diagrams (Figure 3 (b) right) correspond to the birth and death of the four relative
homology classes respectively.
Stratified spaces. We assume that we have a topological space X embedded in some Euclidean space RN . A
(purely) d-dimensional stratification of X is a decreasing sequence of closed subspaces X = Xd ⊇ Xd−1 ⊇
. . .X0 ⊇ X−1 = ∅, such that for each i, the i-dimensional stratum Si = Xi − Xi−1 is a (possibly empty) i-
manifold. The connected components of Si are called i-dimensional pieces. See Figure 4 (a) for an illustration.

= + + +

(a) (b)

yx

Figure 4: (a) The coarsest stratification of a pinched torus with a spanning disc stretched across the hole. (b) The space in (a)
is a cs-space, where the x and y are respectively in the 0-stratum and the 1-stratum, their neighborhoods are highlighted.

One usually also imposes a requirement to ensure that the various pieces fit together uniformly. There are a
number of different ways this can be done (see [20] for an extensive survey). For example, one might assume that
for each x ∈ Si, there exists a small enough neighborhood N(x) ⊆ X and a (d − i − 1)-dimensional stratified
space Lx such that N(x) is stratum-preserving homeomorphic to the product of an i-ball and the cone on Lx; one
can then show that the space Lx depends only on the particular piece containing x. This definition, formally known
as a cs-space, is illustrated in Figure 4 (b). Since the topology on X is that inherited from the ambient space, this
neighborhood N(x) will take the form X ∩ Br(x), where Br(x) is a small enough ball around x in the ambient
space.

We note that the above definition requires all strata to be contained within the closure of the top-dimensional
stratum. It is also possible, of course, to have spaces where this is not the case: for example, a two-dimensional
plane that has been punctured by a line. In this case, a slight adjustment to the above definitions can be made in
order to impose similar notions of uniformity.
Local homology and homology stratifications. Recall ([24]) that the local homology groups of a space X at a
point x ∈ X are the groups Hi(X,X− x) in each homological dimension i. If X happens to be a d-manifold, or if
x is simply a point in the top-dimensional stratum of a d-dimensional stratification, then these groups are rank one
in dimension d and trivial in all other dimensions. On the other hand, the local homology groups for lower-stratum
points can be more interesting; for example if x is the crossing point in Figure 3 (b), then H1(X,X − x) has rank
three.

If x and y are close enough points in a particular piece of the same stratum, then there is a natural isomorphism
between their local homology groups H(X,X − x) ∼= H(X,X − y), which can be understood in the following
manner. Taking a small enough radius r and using excision, we see that the two local homology groups in question
are in fact just H(X∩Br(x),X∩∂Br(x)) and H(X∩Br(y),X∩∂Br(y)). Both of these groups will then map, via
intersection of chains, isomorphically into the group H(X∩Br(x)∩Br(y), ∂(Br(x)∩Br(y)), and the isomorphism
above is then derived from these two maps. In [27], the authors define the concept of a homology stratification of a
space X. Briefly, they require a decomposition of X into pieces such that the locally homology groups are locally
constant across each piece; more precisely, that the maps discussed above be isomorphisms for each pair of close
enough points in each piece.
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3 Topological Inference Theorem

From the discussion above, it is easy to see that any stratification of a topological space will also be a homology
stratification. The converse is unfortunately false. However, we can build a useful analytical tool based on the
contrapositive: given two points in a point cloud, we can hope to state, based on their local homology groups and
the maps between them, that the two points should not be placed in the same piece of any stratification. To do this,
we first adapt the definition of these local homology maps into a more multi-scale and robust framework. More
specifically, we introduce a radius parameter r and a notion of local equivalence, ∼r, which allows us to group
the points of X, as well as of the ambient space, into strata at this radius scale. We then give the main result of
this section: topological conditions under which the point cloud U can be used to infer the strata at different radius
scales.

3.1 Local Equivalence

Local homology intersection map. We assume that we are given some topological space X embedded in some
Euclidean space in RN . For each radius r ≥ 0, and for each pair of points p, q ∈ RN , we define the following
homology map φX(p, q, r):

H(X ∩Br(p),X ∩ ∂Br(p)) → H(X ∩Br(p) ∩Br(q),X ∩ ∂(Br(p) ∩Br(q))). (1)

Intuitively, this map can be understood as taking a chain, throwing away the parts that lie outside the smaller range,
and then modding out the new boundary. Alternatively, one may think of it as being induced by a combination of
inclusion and excision; for a formal and technical definition, see [4].

α1 γ1 β1

f gγ1α1
β1

α1 γ1 β1

f g

γ2

cokf

β2

γ1

γ2

α1 β1

β2

γ1 β1α1

α2

α3

f g

kerf

γ1
α1α2

α3

β1

(a)

(b)

(c)

p q

p q

p q

p q

p q

p q

Figure 5: Let f = φX(p, q, r) and g = φX(q, p, r). The local homology classes are labeled in their corresponding locations.
(a) p and q do not have the same local structure at radius r since ker f 6= 0. (b) p and q do not have the same local structure at
radius r since cok f 6= 0. (c) p and q have the same local structure at radius r since ker f = cok f = 0 and ker g = cok g = 0.

For example, consider the space X drawn in the plane as shown in Figures 5 (a), (b), and (c). For each pair
(p, q) of points shown in the three parts of the figure, we let f = φX(p, q, r) and g = φX(q, p, r). Then the
points p and q are considered to have the same local structure if f and g are both isomorphisms; equivalently, if
ker f = cok f = 0 and if ker g = cok g = 0. In part (a), ker (f) 6= 0, since the classes α2 and α3 go to zero
when passing to the intersection. In part (b), there is a class γ2 ∈ cok f . The maps f and g in part (c) are both
isomorphisms.

Returning to the general case, we use these maps to impose an equivalence relation on RN .

Definition 3.1 (Local equivalence). Two points x and y are said to have equivalent local structure at radius r,
denoted x ∼r y, iff there exists a chain of points x = x0, x1, . . . , xm = y from X such that, for each 1 ≤ i ≤ m,
the maps φX(xi−1, xi, r) and φX(xi, xi−1, r) are both isomorphisms.
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In other words, x and y have the same local structure at this radius iff they can be connected by a chain of points
which are pairwise close enough and whose local homology groups at radius r transfer isomorphically into each
other via the intersection maps.

Different choices of r will of course lead to different equivalence classes. For example, consider the space X
drawn in the plane as shown in the left half of Figure 6 (a). At the radius drawn, point z is equivalent to the cross
point and is not equivalent to either the point x or y. Note that some points from the ambient space will now be
considered equivalent to x and y, and some others will be equivalent to z. On the other hand, a smaller choice of
radius would result in all three of x, y, and z belonging to the same equivalence class.

birth
de
at
h

0

#2

birth

de
at
h

0

ε

2ε

3ε

4ε

3ε2εε 4ε

(a) (b)

x y z

α1 α2

α3

Figure 6: (a) Illustration of equivalence relation: left, x ∼r y, y �r z; right, the 1-dim persistence diagram, for the kernel
of the map going from the z ball into its intersection with the y ball. A number, i.e., #2, labeling a point in the persistence
diagram indicates its multiplicity. (b) Regions in X-diagrams and U-diagrams. The point in the X-diagrams lie either along
the solid black line or in the darkly shaded region. Adding the lightly shaded regions, we get the region of possible points in
the U-diagrams.

(Co)Kernel persistence. In order to relate the point cloud U to the equivalence relation ∼r, we must first define a
multi-scale version of the maps φX(p, q, r); we do so by gradually thickening the space X using the sublevel sets
of its distance function. For each p, q ∈ RN and r, α ≥ 0, we will consider the intersection map φX

α(p, q, r), which
is defined by substituting Xα for X in (1). Note of course that φX(p, q, r) = φX

0 (p, q, r).
For the moment, we fix a choice of p, q, and r, and we use the following shorthand, BX

p (α) = Xα ∩ Br(p),
∂BX

p (α) = Xα ∩ ∂Br(p), BX
pq(α) = Xα ∩ Br(p) ∩ Br(q), ∂BX

pq(α) = Xα ∩ ∂(Br(p) ∩ Br(q)), and we also
often write BX

p = BX
p (0) and BX

pq = BX
pq(0). By replacing X with U in this shorthand, we also write BU

p (α) =
Uα ∩Br(p), and so forth.

For any pair of non-negative real values α ≤ β the inclusion Xα ↪→ Xβ gives rise to the following commutative
diagram:

H(BX
p (α), ∂BX

p (α))
φX

α−→ H(BX
pq(α), ∂BX

pq(α))

↓ ↓

H(BX
p (β), ∂BX

p (β))
φX

β−→ H(BX
pq(β), ∂BX

pq(β)) (2)

Hence there are maps kerφX
α → kerφX

β and cokφX
α → cokφX

β . Allowing α to increase from 0 to ∞ gives rise
to two persistence modules, {kerφX

α} and {cokφX
α}, with diagrams Dgm(kerφX) and Dgm(cokφX). Recall that

a homomorphism is an isomorphism iff its kernel and cokernel are both zero. In our context then, the map φX is
an isomorphism iff neither Dgm(kerφX) nor Dgm(cokφX) contain any points on the y-axis above 0.
Example. As shown in the left part of Figure 6 (a), x, y, and z are points sampled from a cross embedded in the
plane. Taking r as drawn, the right part of Figure 6 (a) displays Dgm1(kerφX), where φX = φX(z, y, r); we now
explain this diagram in some detail. The group H1(BX

z , ∂B
X
z ) has rank three; as a possible basis we might take the

three local homology classes represented by α1, α2, and α3, which are pairs of segments defining the northwest-
facing right angle, the northeast-facing right angle, and the southeast-facing right angle. Under the intersection
map φX = φX

0 , the first of these classes α1 maps to the generator of H1(BX
zy, ∂B

X
zy), while the other two map

to zero. Hence kerφX
0 has rank two. As X starts to thicken into the ambient space, both classes in this kernel

eventually die, one at the α value which fills in the northeast corner of the larger ball, and the other at the α value
which fills in the southeast corner; these two values are the same here due to symmetry in the picture. At this value,
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the map φX
α becomes an isomorphism and it remains so until the intersection of the two balls fills in completely.

This gives birth to a new kernel class which subsequently dies when the larger ball finally fills in. The diagram
Dgm1(kerφX) thus contains three points; the leftmost two show that the map φX is not an isomorphism, and thus
that z and y do not have the same local structure at the chosen radius level.

3.2 Topological Inference Theorem

Given a point cloud U sampled from X, we consider the following question: for a radius r, how can we infer
whether or not any given pair of points in U has the same local structure at this radius? In this subsection, we
prove a theorem which describes the circumstances under which we can make the above inference. Naturally, any
inference will require that we use U to judge whether or not the maps φX(p, q, r) are isomorphisms. The basic
idea is that if U is a dense enough sample of X, then the (co)kernel diagrams defined by U will be good enough
approximations of the diagrams defined by X.
(Co)Kernel stability. Again we fix p, q, and r, and write φX = φX(p, q, r). For each α ≥ 0, we let Uα = d−1

U [0, α].
We consider φU

α = φU
α(p, q, r), defined by replacing X with Uα in (1), as

H(Uα ∩Br(p),Uα ∩ ∂Br(p)) → H(Uα ∩Br(p) ∩Br(q),Uα ∩ ∂(Br(p) ∩Br(q))). (3)

Running α from 0 to ∞, we obtain two more persistence modules, {kerφU
α} and {cokφU

α}, with diagrams
Dgm(kerφU) and Dgm(cokφU).

If U is a dense enough sample of X, then the (co)kernel diagrams defined by U will be good approximations of
the diagrams defined by X. More precisely, we have the following theorem,

Theorem 3.1 ((Co)Kernel Diagram Stability). The bottleneck distances between the (co)kernel diagrams of φU

and φX are upper-bounded by the Hausdorff distance between U and X:

dB(Dgm(kerφU),Dgm(kerφX)) ≤ dH(U,X), dB(Dgm(cokφU),Dgm(cokφX)) ≤ dH(U,X).

Proof. We prove the first inequality; the proof of the second is identical. Put ε = dH(U,X). Then, for each α ≥ 0,
the inclusions Uα ↪→ Xα+ε and Xα ↪→ Uα+ε induce maps kerφU

α → kerφX
α+ε and kerφX

α → kerφU
α+ε. These

maps clearly commute with the module maps in the needed way, and hence we have the required ε-interleaving
and can thus appeal to Theorem 2.1.

Main inference result. We now suppose that we have a point sample U of a space X, where the Hausdorff
distance between the two is no more than some ε. In this case, we call U an ε-approximation of X. Given two
points p, q ∈ U and a fixed radius r, we set φX = φX(p, q, r), and we wish to determine whether or not φX is an
isomorphism. Since we only have access to the point sample U, we instead compute the diagrams Dgm(kerφU)
and Dgm(cokφU); we provide an algorithm for doing this in Section 5.

Given any persistence diagramD, which we recall is a multi-set of points in the extended plane, and two positive
real numbers a < b, we let D(a, b) denote the intersection of D with the portion of the extended plane which lies
above y = b and to the left of x = a; note that these points correspond to classes which are born no later than a
and die no earlier than b.

For a fixed choice of p, q, r, we consider the following two persistence modules: {H(BX
p (α), ∂BX

p (α))} and
{H(BX

pq(α), ∂BX
pq(α))}. We let σ(p, r) and σ(p, q, r) denote their respective feature sizes and then set ρ(p, q, r) to

their minimum. Geometrically, ρ(p, q, r) is related to a local reach and the gradient of dX (as detailed in [4]).
We now give the main theorem of this section, which states that we can use U to decide whether or not φX(p, q, r)

is an isomorphism as long as ρ(p, q, r) is large enough relative to the sampling density.

Theorem 3.2 (Topological Inference Theorem). Suppose that we have an ε-approximation U from X. Then for
each pair of points p, q ∈ RN such that ρ = ρ(p, q, r) ≥ 4ε, the map φX = φX(p, q, r) is an isomorphism iff
Dgm(kerφU)(ε, 3ε) ∪Dgm(cokφU)(ε, 3ε) = ∅.
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Proof. To simplify exposition, we will refer to points in Dgm(kerφX) ∪ Dgm(cokφX) and Dgm(kerφU) ∪
Dgm(cokφU) as X-points and U-points, respectively.

Whenever 0 < α < β < 4ε < ρ, the two vertical maps in diagram (2) will by definition both be isomorphisms.
This is evidently an immediate consequence of the definition of the feature size. Hence the maps kerφX

α → kerφX
β

and cokφX
α → cokφX

β must also be isomorphisms, and so, as α increases from 0 to ∞, any element of the
(co)kernel of φX must live until at least 4ε, and any (co)kernel class which is born after 0 must in fact be born
after 4ε. In other words, any X-point must lie either to the right of the line x = 4ε, or along the y-axis and above
the point (0, 4ε); see Figure 6 (b). Recall that φX is an isomorphism iff kerφX = 0 = cokφX. Thus φX is an
isomorphism iff the black line in Figure 6 (b) contains no X-points.

On the other hand, Theorem 3.1 requires that every U-point must lie within ε of an X-point. That is, all U-points
are contained within the two lightly shaded regions drawn in Figure 6 (b). Since the rightmost such region is
more than ε away from the thick black line, there will be a U-point in the left region iff there is an X-point on
the thick black line. But the U-points within the left region are exactly the members of Dgm(kerφU)(ε, 3ε) ∪
Dgm(cokφU)(ε, 3ε).

qp qp

birth

de
at
h

0

#2

(ε, 3ε)

(a) (b) (c)
Figure 7: (a) Space X is the black cross, with p, q, r as drawn. (b) Space U is an ε-approximation of X. (c) The kernel
persistence diagram of φX(p, q, r) (X-diagram) is shown to contain black empty points; the kernel diagram of φU(p, q, r)
(U-diagram) is shown to contain red filled points. Suppose only U is given, we can use U-diagram to infer that points p and q
are not locally equivalent.

Figure 6 (b) illustrates Theorem 3.2, that is, under certain topological conditions, φX is an isomorphism if and
only if certain regions in the U-diagrams are empty. For example, suppose X is the cross shown in Figure 7 (a),
with p, q, r as drawn. p and q are locally different at this radius level, as shown by the presence of two black empty
points on the y-axis of the kernel persistence X-diagram (Figure 7 (c)). Suppose X is unknown and we are only
given U, an ε-approximation of X (Figure 7 (b)). From the kernel U-diagram, which has two points in the relevant
rectangle, we can infer that p and q do not have the same local structure at radius level r by applying Theorem 3.2.

4 Probabilistic Inference Theorem

The topological inference of Section 3 states conditions under which the point sample U can be used to infer
stratification properties of the space X. The basic condition is that the Hausdorff distance between the two must
be small. In this section we describe a probabilistic model for generating the point sample U, and we provide an
estimate of how large this point sample should be to infer stratification properties of the space X with a quantified
measure of confidence. More specifically, we provide a local estimate, based on ρ(p, q, r) and ρ(q, p, r), of how
many sample points are needed to infer the local relationship at radius level r between two fixed points p and q;
this same theorem can be used to give a global estimate of the number of points needed for inference between any
pair of points whose ρ-values are above some fixed low threshold.
Sampling strategy. We assume X to be compact. Since the stratified space X can contain singularities and
maximal strata of varying dimensions, some care is required in the sampling design. Consider for example a sheet
of area one, punctured by a line of length one. In this case, sampling from a naively constructed uniform measure
on this space would result in no points being drawn from the line. This same issue arose and was dealt with in
[26], although in a slightly different approach than we will develop.
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A sampling strategy that will deal with the problem of varying dimensions is to use a mixture model. In the
example of the sheet and line, a uniform measure would be placed on the sheet, while another uniform measure
would be placed on the line, and a mixture probability is placed on the two measures; for example, each measure
could be drawn with probability 1/2. We now formalize this approach. Consider each (non-empty) i-dimensional
stratum Si = Xi − Xi−1 of X. All strata that are included in the closure of some higher-dimensional strata, in
other words all non-maximal strata, are not considered in the model. A uniform measure is assigned to the closure
of each maximal stratum, µi(Si), this is possible since each such closure is compact. We assume a finite number
of maximal strata K and assign to the closure of each such stratum a probability pi = 1/K. This implies the
following density f(x) = 1

K

∑K
j=1 νi(X = x), where νi is the density corresponding to measure µi. The point

sample is generated from the following model: U = {x1, ..., .xn}
iid∼ f(x). We call this model M .

Lower bounds on the sample size of the point cloud. Our main theorem is the probabilistic analogue of Theorem
3.2. An immediate consequence of this theorem is that, for two points p, q ∈ U, we can infer with probability at
least 1− ξ whether p and q are locally equivalent, p ∼r q. The confidence level 1− ξ will be a monotonic function
of the size of the point sample. The theorem involves a parameter v(ρ), for each positive ρ, which is based on the
volume of the intersection of ρ-balls with X. First we note that each maximal stratum of X comes with its own
notion of volume: in the plane punctured by a line example, we measure volume in the plane and in the line as area
and length, respectively. The volume vol (Y) of any subspace Y of X is the sum of the volumes of the intersections
of Y with each maximal stratum. For ρ > 0, we define v(ρ) = infx∈X

vol (Bρ/32(x)∩X)

vol (X) . We then have our main
theorem,

Theorem 4.1 (Local Probabilistic Sampling Theorem). Let {x1, x2, ..., xn} be drawn from modelM . Fix a pair of
points p, q ∈ RN and a positive radius r, and put ρ = min{ρ(p, q, r), ρ(q, p, r)}. If n ≥ 1

v(ρ)

(
log 1

v(ρ) + log 1
ξ

)
,

then, with probability greater than 1− ξ we can correctly infer whether or not φX(p, q, r) and φX(q, p, r) are both
isomorphisms.

Proof. A finite collection U = {x1, x2, ..., xn} of points in RN is ε-dense with respect to X if X ⊆ Uε; equiva-
lently, U is an ε-cover of X. Let C(ε) be the ε-covering number of X, the minimum number of sets Bε ∩ X that
cover X. Let P (ε) be the ε-packing number of X, the maximum number of sets Bε ∩ X that can be packed into X
without overlap.

We consider a cover of X with balls of radius ρ/16. If there is a sample point in each ρ/16-ball, then U will
be an ε-approximation of X, with ε ≤ 4(ρ/16) = ρ/4. This satisfies the condition of the topological inference
theorem, and therefore we can infer the local structure between p and q.

The following two results from [25] will be useful in computing the number of sample points n needed to obtain,
with confidence, such an ε-approximation.

Lemma 4.1 (Lemma 5.1 in [25]). Let {A1, A2, ..., Al} be a finite collection of measurable sets with probability
measure µ on ∪l

i=1Ai, such that for all Ai, µ(Ai) > α. Let U = {x1, x2, ..., xn} be drawn iid according to µ. If
n ≥ 1

α(log l + log 1
ξ ), then, with probability 1− ξ, ∀i, U ∩Ai 6= ∅.

Lemma 4.2 (Lemma 5.2 in [25]). Let C(ε) be the covering number of an ε-cover of X and P (ε) be the packing
number of an ε-packing, then

P (2ε) ≤ C(2ε) ≤ P (ε).

Again, we consider a cover of X by balls of radius ρ/16. Let {yi}l
i=1 ∈ X be the centers of the balls contained

in a minimal sub-cover. Put Ai = Bρ/16(yi) ∩ X. Applying Lemma 4.1, we obtain the estimate

n ≥ 1
α

(
log l + log

1
ξ

)
,

where l is the ρ/16-covering number, and α = mini
vol (Ai)
vol (X) .
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Applying Lemma 4.2,

l = C(ρ/16) ≤ P (ρ/32) ≤ vol (X)
vol (Bρ/32 ∩ X)

≤ 1
v(ρ)

.

On the other hand, 1
α ≤

1
v(ρ) by definition, and the result follows.

To extend the above theorem to a more global result, one can pick a positive ρ and radius r, and consider the set
of all pairs of points (p, q) such that ρ ≤ min{ρ(p, q, r), ρ(q, p, r}. Applying Theorem 4.1 uniformly to all pairs
of points will give the minimum number of sample points needed to settle the isomorphism question for all of the
intersection maps between all pairs.

5 Algorithm

The theorems in the previous sections give conditions under which a point cloud U, sampled from a stratified space
X, can be used to infer the local equivalences between points on X. We now switch gears slightly, and imagine
clustering the U-points into strata.

The basic strategy is to build a graph on the point set, with edges corresponding to positive isomorphism judg-
ments. The connected components of this graph will then be our proposed strata.

More precisely, we build a graph where each node in the graph corresponds uniquely to a point from U. Two
points p, q ∈ U (where ||p − q|| ≤ 2r) are connected by an edge iff both φX(p, q, r) and φX(q, p, r) are isomor-
phisms, equivalently iff Dgm(kerφU)(ε, 3ε) and Dgm(cokφU)(ε, 3ε) are empty. The connected components of
the resulting graph are our clusters. A more detailed statement of this procedure is giving in pseudo-code, see
Algorithm 5.1. Note that the connectivity of the graph is encoded by a weight matrix, and our clustering strategy
is based on a 0/1-weight assignment. We discuss the robustness of our algorithm in a subsequent section.

Algorithm 5.1 Strata-Inference(U, r, ε)
for all p, q ∈ U do

if ||p− q|| > 2r then
W (p, q) = 0

else
Compute Dgm(kerφU(p, q, r)) and Dgm(cokφU(p, q, r))
Compute Dgm(kerφU(q, p, r)) and Dgm(cokφU(q, p, r))
if Dgm(kerφU(p, q, r))(ε, 3ε) ∪Dgm(cokφU(p, q, r))(ε, 3ε) 6= ∅ then
W (p, q) = 0

else if Dgm(kerφU(q, p, r))(ε, 3ε) ∪Dgm(cokφU(q, p, r))(ε, 3ε) 6= ∅ then
W (p, q) = 0

else
W (p, q) = 1

end if
end if

end for
Compute connected components based on W.

A crucial subroutine in the clustering algorithm is the computation of the diagrams Dgm(kerφU) and Dgm(cokφU),
for φU = φU(p, q, r) between all pairs (p, q) ∈ U×U. We will focus our attention in this section on the computation
of the (co)kernel diagrams.

To compute the diagrams Dgm(kerφU) and Dgm(cokφU) we require for each α ≥ 0 a simplicial analogue
of the map φU

α : H(BU
p (α), ∂BU

p (α)) → H(BU
pq(α), ∂BU

pq(α)). We define, for each α ≥ 0 (a) two pairs of
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simplicial complexes L0(α) ⊆ L(α) and K0(α) ⊆ K(α), and (b) a relative homology map between them ψα :
H(L(α), L0(α)) → H(K(α),K0(α)). Later, we give a correctness proof that Dgm(kerφU) = Dgm(kerψ) and
Dgm(cokφU) = Dgm(cokψ).

5.1 Robustness of clustering

Two types of errors in the clustering can occur: false positives where the algorithm connects points that should
not be connected and false negatives where points that should be connected are not. The current algorithm we
state is somewhat brittle with respect to both false positives as well as false negatives. We will suggest a very
simple adaptation of our current algorithm that should be more stable with respect to both false positives and false
negatives.

The false positives are driven by the condition in Theorem 3.2 that ρ < 4ε, so if the point cloud is not sampled
fine enough we can get incorrect positive isomorphisms and therefore incorrect edges in the graph. If we use
transitive closure to define the connected components this can be very damaging in practice since a false edge can
collapse disjoint components into one large cluster.

The false negatives occur because our point sample U is not fine enough to capture chains of points that connect
pairs in U through isomorphisms, there may be other points in X which if we had sampled then the chain would
be observed. The probability of these events in theory decays exponentially as the sample size increases and the
confidence parameter ξ controls these errors.

We now state a simple adaptation of the algorithm that will make it more robust. It is natural to think of the
0/1-weight assignment on pairs of points p, q ∈ U as an association matrix W. A classic approach for robust
partitioning is via spectral graph theory [23, 21, 9]. This approach is based an eigen-decomposition of the the
graph Laplacian, L = D − W with the diagonal matrix Dii =

∑
j Wij . The smallest nontrivial eigenvalue

λ1 of W is called the Fiedler constant and estimates of how well the vertex set can be partitioned [15]. The
corresponding eigenvector v1 is used to partition the vertex set. There are strong connections between spectral
clustering and diffusions or random walks on graphs [9].

The problems of spectral clustering and lower dimensional embeddings have been examined from a manifold
learning perspective [1, 2, 16]. The idea central to these analyses is given a point sample from a manifold construct
an appropriate graph Laplacian and use its eigenvectors to embed the point cloud in a lower dimensional space.
A theoretical analysis of this idea involves proving convergence of the graph Laplacian to the Laplace-Beltrami
operator on the manifold and the convergence of the eigenvectors of the graph Laplacian to the eigenvalues of
the Laplace-Beltrami operator. A key quantity in this analysis is the Cheeger constant which is the first nontrivial
eigenvalue of the Laplace-Beltrami operator [8]. An intriguing question is whether the association matrix we
construct from the point cloud can be related to the Laplacian on high forms.

5.2 Preliminaries

To construct the simplicial complexes in our algorithm, we will compute Voronoi diagrams and nerves of sets of
collections derived from these Voronoi diagrams.
Voronoi diagram. Given a finite collection U of points in RN and ui ∈ U, then the Voronoi cell of ui is defined to
be:

Vi = V (ui) = {x ∈ RN | ||x− ui|| ≤ ||x− uj ||,∀uj ∈ U}.

The set of cells Vi covers the entire space and forms the Voronoi diagram of RN , denoted as Vor (U|RN ). If we
restrict each Vi to some subset X ⊆ RN , then the set of cells Vi ∩ X forms a restricted Voronoi diagram, denoted
as Vor (U|X). For a simplex σ with vertices in U, we set Vσ = ∩ui∈σVi.
Nerves. The nerveN(C) of a finite collection of sets C is defined to be the abstract simplicial complex with vertices
corresponding to the sets in C and with simplices corresponding to all non-empty intersections among these sets,
N(C) = {S ⊆ C |

⋂
S 6= ∅}. Every abstract simplicial complex can be geometrically realized, and therefore

the concept of homotopy type makes sense. Under certain conditions, for example whenever the sets in C are all
closed and convex subsets of Euclidean space ([14], p.59), the nerve of C has the same homotopy type, and thus
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the same homology groups, as the union of sets in C. This implies we can compute H(Uα), the absolute homology
of the thickened point cloud, by computing the nerve of the collection of sets Vi ∩ Uα.

The nerve of the restricted Voronoi diagram Vor (U|X) is called the restricted Delaunay triangulation, denoted
as Del (U|X). It contains the set of simplices σ for which Vσ ∩ X 6= ∅.
Power cells, lunes, and moons. We need to compute the relative homology groups H(BU

p (α), ∂BU
p (α)) and

H(BU
pq(α), ∂BU

pq(α)). The direct argument used to compute absolute homology based on the nerve does not apply
to computing relative homology groups since the collection of the sets Vi ∩ ∂BU

p (α) and Vi ∩ ∂BU
pq(α) need not

be convex.
To get around this problem, we first define the power cell with respect to Br(p), P (α), as P (α) = {x ∈

RN | ||x − p||2 − r2 ≤ ||x − u||2 − α2,∀u ∈ U}, and we set P0(α) = Br(p) − intP (α). Replacing p with
q in this formula gives Q(α), the power cell with respect to Br(q). Finally, we set Z(α) = P (α) ∩ Q(α), and
Z0(α) = (Br(p)∩Br(q))− intZ(α). These definitions are illustrated in Figure 8 (a). Note that P0(α) and Z0(α)
are both contained in Uα.

p

q

P (α) Q(α)

Z(α)

p q

Mq

Lq

p q

Mp

Lp

(a)

(b)

P

Figure 8: (a) Illustration of intersection power cell Z(α), as the grey shaded region. The unshaded convex regions are P (α)
and Q(α) respectively. The dark pink and black shaded regions (pointed by single and double arrows) correspond to P0(α)
and Q0(α) respectively. (b) Illustration of the lune and the moon. The shaded regions are the respective moons. The white
regions within solid circles are the respective lunes.

It turns out that replacing ∂BU
p (α) with P0(α) and ∂BU

pq(α) with Z0(α) has no effect on the relative homology
groups in question. That is, the spaces (BU

p (α), ∂BU
p (α)) and (BU

p (α), P0(α)) are homotopy equivalent, so are
the spaces (BU

pq(α), ∂BU
pq(α)) and (BU

pq(α), Z0(α)). Consequently, their homology groups are isomorphic. The
first part of this statement was proven in [3], and a proof of the second appears in [4]. The sets Vi ∩ P0(α) are
convex [3]. Unfortunately, it is still possible for Vi ∩Z0(α) to be non-convex, which requires a further subdivision
of the Voronoi cells by bisection. Consider the hyperplane P of points in RN which are equidistant from p and q.
This will divide RN into two half-spaces with Pp and Pq denoting the half-spaces containing p and q. Given Pp

we define the p-lune, Lp, and p-moon, Mp, as follows (see Figure 8 (b)): Lp = Pq ∩Br(p),Mp = Pp ∩Br(p).
The lune and the moon divide each Voronoi cell into two parts, V L

i = Vi ∩ Lp and V M
i = Vi ∩Mp. These sets

are obviously convex, assuming they are non-empty, since they are each the intersection of two convex sets. It also
turns out that the non-empty sets among V L

i ∩ Z0(α) and V M
i ∩ Z0(α) are convex; see [4] for a proof.

5.3 Algorithm to compute simplicial analogues

Our algorithm to compute simplicial analogues contains two steps: (a) defining the simplicial complexes and (b)
defining the corresponding relative homology simplicial maps. We first define the pairs of simplicial complexes
L0(α) ⊆ L(α) and K0(α) ⊆ K(α). Set A to be the collection of the non-empty sets among V L

i ∩ BU
p (α) and

V M
i ∩ BU

p (α). Define A0 as the collection of the nonempty sets among V L
i ∩ P0(α) and V M

i ∩ P0(α). Note
that ∪A = BU

p (α) and ∪A0 = P0(α). Taking the nerve of both collections, we define the simplicial complexes
L(α) = N(A) and L0(α) = N(A0). Similarly, we define C and C0 to be the collections of the non-empty sets

12



among, respectively, V L
i ∩BU

pq(α) and V M
i ∩BU

pq(α), and V L
i ∩Z0(α) and V M

i ∩Z0(α). We define K(α) = N(C)
and K0(α) = N(C0). See Figure 9 for an example of the simplicial complexes constructed in R2 for a given U.

u1

u2

p q

Figure 9: Illustration of the simplicial complexes constructed around two points p and q. The underlying Voronoi decompo-
sition of the space is shown in thin dotted lines. u1 and u2 in U are the points whose restricted Voronoi regions intersect with
the lune at non-convex regions.

To define the maps ψα : H(L(α), L0(α)) → H(K(α),K0(α)) we need the following technical lemma:

Lemma 5.1 (Containment Lemma). Assume that a simplex σ is in L0(α). If σ is also inK(α), then σ is inK0(α),
as well.

Proof. Recall that the lune and the moon divide each Voronoi cell into two parts, V L
i = Vi∩Lp and V M

i = Vi∩Mp.
These are defined as the partial Voronoi cells. For simplicity, for a simplex σ ∈ L(α) (similarly for a simplex in
L0, K and K0), we define V σ as the intersection of the partial Voronoi cells that correspond to the vertices of σ.
That is, σ ∈ L(α) iff V σ ∩BU

p (α) 6= ∅. By definition, σ ∈ L0(α) iff there exists some point x ∈ V σ ∩P0(α). We
must show that the set V σ∩Z0(α) is non-empty. Note that x ∈ P0(α) implies that x ∈ Br(p), while x 6∈ intP (α)
implies that x 6∈ intZ(α). If x ∈ Br(q), then we are done, since Z0(α) = Br(p) ∩Br(q)− intZ(α).

Otherwise, choose some point y ∈ V σ ∩ Uα ∩ Br(p) ∩ Br(q), which is possible since σ ∈ K(α). Since
both x and y belong to the same convex set V σ ∩ Uα ∩ Br(p), there exists a directed line segment γ from x
to y within this set connecting them. We imagine moving along γ and first we suppose that γ intersects Br(q)
before it intersects intQ(α). Let z be the first point of intersection. Then z ∈ Br(p) ∩ Br(q), z /∈ intQ(α).
Therefore z ∈ V σ ∩ Z0(α). On the other hand, we may prove by contradiction that it is impossible for γ to
intersect Q(α) before it intersects Br(q). Let z′ be the first point of such an intersection. Since z′ ∈ Q(α), by
definition ||z′ − q||2 − r2 ≤ ||z′ − ui||2 − α2, ∀ui ∈ U. Since z′ ∈ Uα, ∀ui ∈ σ, ||z′ − ui||2 − α2 ≤ 0. Therefore
||z′ − q||2 − r2 ≤ ||z′ − ui||2 − α2 ≤ 0, ∀ui ∈ σ. Since z′ is outside Br(q), ||z′ − q||2 − r2 > 0. This is a
contradiction.

To define ψα, we first construct a chain map g = gα : C(L(α)) → C(K(α)) as follows. Given a simplex
σ ∈ L(α), we define g(σ) = σ if σ ∈ K(α), and g(σ) = 0 otherwise; we then extend g to a chain map by
linearity. Using the Containment Lemma, we see that g(C(L0(α))) ⊆ C(K0(α)), and thus g descends to a relative
chain map f = fα : C(L(α), L0(α)) → C(K(α),K0(α)). Since f clearly commutes with all boundary operators,
it induces a map on relative homology, this is our ψ = ψα. To compute the diagrams involving ψ, we reduce
various boundary matrices via (co)kernel persistence algorithm described in [12], in time at most cubic in the size
of the simplicial complexes representing the data.
Correctness. We show that our algorithm is correct by proving the following theorem. A sketch of the proof is
given here, with the details deferred to [4].
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Theorem 5.1 (Correctness Theorem). The persistence diagrams involving simplicial complexes are equal to the
persistence diagrams involving the point cloud, that is, Dgm(kerφU) = Dgm(kerψ) and Dgm(cokφU) =
Dgm(cokψ).

Proof sketch. To prove Theorem 5.1, we will prove, for each α ≤ β, that the following diagram (as well as a
similar diagram involving cokernels) commutes, with the vertical maps being isomorphisms.

. . .→kerφU
α → kerφU

β → . . .

↑∼= ↑∼=
. . .→kerψα → kerψβ → . . . . (4)

Applying Theorem 2.2 then finishes the claim. Therefore Dgm(kerφU) = Dgm(kerψ) and Dgm(cokφU) =
Dgm(cokψ).
Simple Simulations. We use a simulation on simple synthetic data with points sampled from grids to illustrate
how the algorithm works. We assume we know ε and we run our algorithm for 0 ≤ α ≤ 3ε. As shown in Figure 10
(a), if two points x and y (also, z and w) are locally equivalent, their corresponding kernel and cokernel persistence
diagrams shown in Figure 10 (b) contain the empty quadrant predicted by our theorems. On the other hand, if two
points x and z are not equivalent, then the kernel persistence diagrams shown in Figure 10 (c) do not contain such
empty quadrants.

#2

de
at
h

0 birth

de
at
h

0 birth

x

y
z

w

(a) (b) (c)

Figure 10: Points sampled from two intersecting planes. Left: points x and y belong to 1-strata, points z and w belong to
2-strata. Middle: kernel and cokernel persistent diagrams with respect to pairs x and y, z and w. Right: kernel persistent
diagram with respect to pairs x and z. A number labeling a point in the persistence diagram indicates its multiplicity.

6 Discussion

We have presented a first step towards learning stratified spaces. There are several open issues of interest including:
algorithmic efficiency and scaling with dimension using Rips or Witness complexes [13] instead of Delaunay
triangulation, robustness of the algorithm and weighting local equivalence, and extensions to the noisy setting [25]
when the mixture is concentrated around the stratified space.

Specifically, the algorithm to compute the (co)kernel diagrams from the thickened point cloud is based on an
adaption of Delaunay triangulation and the power-cell construction. This algorithm should be quite slow when the
dimensionality of the ambient space is high due to the runtime complexity of Delaunay triangulation. One idea to
address this bottleneck is to use Rips or Witness complexes [13]. Another approach is to use dimension reduction
techniques such as principal components analysis (PCA) or random projection that approximately preserve distance
[10] as a preprocessing step. Another idea that may work if the ambient dimension is not too high is using faster
algorithms to construct Delaunay triangulations [5].
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