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Abstract

Given a functionf : X — R on atopological space, we consider the preimages of interva
and their homology groups and show how to read the ranks sétgeoups from the ex-
tended persistence diagram fof In addition, we quantify the robustness of the homology
classes under perturbations pfising well groups, and we show how to read the ranks of
these groups from the same extended persistence diagraersp€gial casX = R? has
ramifications in the fields of medical imaging and scientifginalization.

Keywords. Topological spaces, continuous functions, interleve$,sebmology, extended persis-
tence, perturbations, well groups, robustness.

1 Introduction

The work reported in this paper has two motivations, oneréitéral and the other practical.
The former is the recent introduction well groupsin the study of mappingg : X — Y
between topological spaces. Assuming a metric space aifirpattons, we have such a
group for each subspade C Y, each bound > 0 on the magnitude of the perturbation,
and each homological dimensign These groups, and the diagrams that they generate,
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extend the boolean concept of transversality to a realecatneasure we refer to azbust-
ness Using this measure, we can quantify the robustness of a fised of a mapping [10]
and prove the stability of the apparent contour of a mappioig fan orientabl@-manifold
toR? [9]. In this paper, we contribute to the general understagdf well groups by study-
ing the real-valued case. Along the way, we also extend thergétheory of well groups
to incorporate relative well groups. Specifically,

I. we give a general definition of relative well groups givemappingf : X — Y, a
numberr > 0, and a nested paix’ C A of subspaces df, and

Il. we characterize the relative well groupsof X — R whenever is an interval and
A’ is a subset of the endpoints.

Applications of this theoretical work are anticipated indioal imaging and scientific vi-
sualization, where data in the form of real-valued fundi@common. To mention one
example, it is common to acquire information about inteiwrglans through a magnetic
resonance image, which results ii-dimensional array of intensity values, best viewed as
a function from the unit cube to the real line. The predomimaethod for highlighting or
extracting relevant substructures of this image uses aigé® of real values. Generically,
these ar@-manifolds, commonly referred to asntoursor isosurfaceg12]. Sometimes,
these2-manifolds are complemented by preimages of intervalsrrefl to asnterval vol-
umesin visualization [11]. In this paper, we call the preimageaofalue devel set and
the preimage of an interval anterlevel setin which the interval can be closed, open, or
half-open. We contribute to the state-of-the-art by

[ll. explaining how the homology of level and interlevelsetan be read off the extended
persistence diagram of the function, and

IV. describing how the robustness of features in level andrievel sets, quantified
through well groups, can be read off the same diagram.

Our results add up to a ‘point calculus’ in algebraic topglémy mining the rich homolog-
ical information contained in the extended persistencgrdia of a real-valued function.
The compactness of the data representation and the effjc@nbe mining operations
make the diagram an attractive graphical interface toodtfiodying3-dimensional images.
We view this tool as complementary to the contour spectrerdesd in [1], which plot con-
tinuously varying quantities, such as area and volume sadiee family of level sets. The
most novel aspect of our diagram is the robustness infoomatvhich has previously not
been available. This novelty is combined with the unprenesteease with which homo-
logical information is accessible. There is also evidemwcdife practicality of the interface
provided by the fast oct-tree implementation of the desttitoncepts [2], which has been
used to study-dimensional images of root systems of agricultural plants

Outline. In Section 2, we review necessary background on persisteigzag modules,
and well groups. In Section 3, we explain the point calcubrdriterlevel sets. In Section
4, we extend the point calculus to include the robustnessrmdtion provided by the well
groups. Finally, Section 5 concludes the paper with a biigdfubsion of the contributions
and of future research directions.



2 Background

We divide the background material into three parts, intodag persistence and extended
persistence in Section 2.1, explaining the extension trarjgnodules and level set pyra-
mids in Section 2.2, and defining absolute and relative welligs in Section 2.3.

2.1 Forward Maps

Traditional persistent homology is based on a nested segquErspaces, which induces a
linear sequence of homology groups connected by maps fridto kéght. We describe this
concept in two steps.

Persistence. The persistence of homology classes along a filtration gpaltmical space
can be defined in a quite general context [8]. For this paperneed only a particular
type of filtration, one defined by the sublevel sets of a tannetfon. Given a real-valued
function f on a compact topological spa&e we consider the filtration aX via thesub-
level setsX,.(f) = f~!(—oo,r], for all real values:. Whenever < s, the inclusion
X, (f) — X,(f) induces maps on the homology groups(X, (f)) — H,(Xs(f)), for
each dimensiomp. Here we will use field coefficients so that the homology gsoape
torsion-free and are therefore vector spaces over the f@fien we will suppress the ho-
mological dimension from our notation, writid(X.(f)) = @, Hp(X;.(f)); in this case,
we will always assume that all mapKX,.(f)) — H(X(f)) decompose into the direct
sum of maps on each factor. A real valués called ahomological regular valuef f if
there exists > 0 such that the inclusioi, _s(f) — X,1s(f) induces an isomorphism
between homology groups for evefy< . If r is not a homological regular value, then it
is ahomological critical value We say thatf is tameif it has finitely many homological
critical values and if the homology groups of each sublegeehsve finite rank. Assum-
ing that f is tame, we enumerate its homological critical values< ro < ... < rp,.
Choosingn + 1 homological regular values such thatsy < r1 < s1 < ... <7, < Sy,
we putX; = X, (f). The inclusionsX; — X, induce maps$®/ : H(X;) — H(X;) for

0 < i < j < n and give the following filtration:

0= H(Xp) — H(X1) — ... — H(X,) = H(X). 1)

We say a clasa € H(X;) isbornatX; if a ¢ imfi=1%. A classa born atX; is said to
die enteringX; if f*/(a) € imf"= butf*/~!(a) ¢ imf'=1~1. We remark that if a
classa is born atX;, then every class in the codefl = o + im f=1% is born at the same
time. Of course, whenever such ardies enteringX;, the entire cosdir] also dies with
it. We representx graphically as the pointr;, r;) in the plane. Drawing all birth-death
pairs as points, we get diagrams like the ones sketched imésdlL and 3. Supposing that
b € R is different from all homological critical points, we cotieall points in the upper-
left quadrant defined byb, b) to get all classes born befobeand still alive; see the left
diagram in Figure 1. Their number is the rank of the homologyug of the sublevel set,
rank H(X,(f)).

Observe that we really need the extended plane to draw tiésgmécause some classes
get born but never die, so the corresponding points xavas their second coordinates.
There is an elegant way around this minor annoyance, whichomedescribe.
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Figure 1: From left to right: the ordinary, extended, andhtieé subdiagrams dbDgm (f). The
number of points (not shown) in the dark shaded regions ialequthe rank of the homology group
of the sublevel set defined by

Extended persistence. Since the filtration in (1) begins with the zero group but ends
with a potentially nonzero group, it is possible to have sdssthat are born but never die.
We call theseessentiaklasses, as they represent the actual homology of the 3pate
measure the persistence of the essential classes, we {@l@md extend the sequence in
(1) using relative homology groups. More precisely, we ad&sfor eachi the superlevel
setX! = f~1[s,_;,00). Note that we hav&’ = () andX" = X by compactness. For

i < j, the inclusionX’ — X/ induces a map on relative homologyX, X%) — H(X, X7).
These maps therefore give rise to the following extendedfitn:

0=H(Xo) = H(Xy) = ... = H(X,) = HX,X?) — ... = H(X,X") = 0. ()

We extend the notions of birth and death in the obvious wagcéthis filtration begins
and ends with the zero group, all classes eventually die. M extend the graphical
representation of the information contained by formpegsistence diagramsvhich we
now introduce more formally. We have such a diagram for eactedsionp; see Figure

1. Each diagram is a multiset of points in the plane, comaiine pointr;, ;) for each
coset of classes that is born¥tor (X, X"~“+1), and dies entering,; or (X, X"~7+1). In
some circumstances, it is convenient to add the points oditignal to the diagram, but in
this paper, we will refrain from doing so. The persisten@gdaim contains three important
subdiagrams, corresponding to three different combinataf birth and death location.
The ordinary subdiagramOrd,(f), represents classes that are born and die during the
first half of (2). Therelative subdiagramRel,(f), represents classes that are born and die
during the second half. Finally, trextended subdiagrarixt,(f), represents classes that
are born during the first half and die during the second hatfiefextended filtration. Note
that points inOrd,,(f) all lie above the main diagonal while pointsiel, () all lie below.

On the other handixt,(f) may contain points on either side of the main diagonal. By
Dgm(f), we mean the points of all diagrams in all dimensions. Drawiliese subdiagrams
side by side can be cumbersome, and drawing them on top obélaehcan be confusing.

In Section 3, we will introduce a new design that addresseseticoncerns.



2.2 Mixed Maps

We note that the homology groups in the extended filtratiq@pfor in the shorter filtration
of (1), are all vector spaces over a fixed field and that the rbatvgeen them are all linear
maps. In [5], Carlsson and de Silva generalize this sitaaticsequences of vector spaces
that are connected by maps going from left to right or fronitig left. We now briefly
review their work as well as the related work on level setagmodules in [6].

Zigzag modules. A zigzag modul&V is a finite sequence of vector spaces connected by
linear maps which either go forward or backward betweenecuis/e spaces:

Wi oWy oo oW oW oL o W, 3)

If the arrow advances fro; to W, 1, then we denote the corresponding linear map as
a; + W; — W, 1; otherwise, we writéh; : W;;1 — W;. A submoduleJ of W is a
collection of linear subspacds; C W; such thata;(U;) C Ujyq orb;(Ujpq) € Uy,
whichever is the case fgr. A submoduleU is a summandf there is a complementary
submoduleV, meaning every vector space splits as a direct 8= U; © V;. The
authors in [5] prove that every zigzag module can be splitindecomposable summands
of a certain form, and, in particular, it has a basis, a coneepnow describe. First,
we suppose that we have, for eatha set of eIement&ﬁ- € W; such that the nonzero
elements form a basis &%;. In other words, we can decompdag into the direct sum
W; = @, (u’), noting that some of the terms on the right hand side may be 2éke

use the superscripts to form correspondences between $kes.b8pecifically, we require
aj(ub) = u’,;, orb;(u}, ) = uf, depending on the case. Furthermore, we assume that,
for each superscrigt there exist: < y such thatu;ﬂ # 0iff j € [z,y]. In other words, for
each fixed, we have a submodule

%

(uy) & (us) & ... < <UJ> A <U§‘+1> AR <U;> (4)

of W in which the non-zero vector spaces ardimensional and form a single contiguous
subsequence connected by identity maps. Calling such aslldenarinterval modulewe
think of it as being in correspondence with the closed iretkfw, y]. The collection{u’}

is abasisfor the zigzag module ¥V can be decomposed into the direct sum of the interval
modules (4). Equivalently, the collection is a basis\Wif each mapu; is the direct sum

of the mapgu}) — (u}, ), and each map is the direct sum of the mags’ ;) — (u}),
whichever one is defined.

Although a zigzag modul@/ can have many different bases, the set of intervals asso-
ciated to any such basis will be unique [5]. For example, asidfor the zigzag module
given by the filtration in (1) will have one intervét, y] for each coset of classes born at
X, and dying enterings,,.

Mayer-Vietoris diamonds. We are interested in an elementary operation that connects
two minimally different zigzag modules: Mayer-Vietoris diamondWe suppose that we
have two zigzag modules differing only at positipnand that at this position we have a



diamond of the following form:

H(V, V')
/ \
H(C,C) H(D,D') «— , (5)
'\ /
H(E,E)

where we show the more general, relative form in which thepd spaces are subspaces
of the corresponding unprimed ones, and we ave C "D, E' = C' N D',V =C U D,
andV’ = C’ UD'. We get the more special, absolute form by setfifig= D' = E' =

V' = (). The name of the diamond is justified by the long exact sequiereaget by reading
the diamond from bottom to top and iterating through the disiens. When the primed
spaces are all empty, this gives the classic version of thgelM€dietoris sequence, and
more generally, we get the relative version:

.= HR(E,E') - Hy(C,C") @ Hy(D, D) — Hy(V, V') = Hp 1 (E,E') — .. .;

see e.g. [13]. Importantly, this sequence is exact, whicama¢hat the image of each map
equals the kernel of the next map.
Such diamonds arise in the following context. Considermga functionf : X — R

and the interleaved sequence of homological regular altidain'/alueS'so <r <s <

. < Ty < sp. SettingWs; = H(f~1(s;)) andWa, 11 = H(f1[s;, s;41]), we get a
zigzag module of lengtbn + 1, which, foIIowmg [6], we refer to as thievel set zigzagf
f. It starts and ends with and alternates between advancing magsand backward
mapsby;+1. From this module, we can create a new one by fixing an indesub-
Stltutlng [Sj75j+2] = [Sj,SjJrl] U [5j+175j+2] for Sj+1 = [Sj,SjJrl] n [Sj+1, Sj+2], and
leaving all other groups unchanged; of course we also rexbestwo maps involving the
changed space. This produces a new zigzag module whichgfiffen the old via a Mayer-
Vietoris diamond. This construction can be generalized ippifig between intersections
and unions of larger intervals and pairs of intervals, thaglpcing a whole array of zigzag
modules which differ via Mayer-Vietoris diamonds.

Thepyramid. Starting with the level set zigzag, we get an array of zigzagutes which
are best described as monotonic paths that go diagonallgdig@vn, always from left to
right. The array of such paths is connected within a pyrahsttacture, which we now
describe. As a graphical guide, we consider the square dirmiigure 2. We give it a
coordinate system by parameterizing the downward slope #oat the upper left, te-co

in the middle, and back up tso at the lower right. Similarly, we parameterize the upward
slope from—co at the lower left, toxo in the middle, and back te-co at the upper right.
The two slopes divide the square into four triangular regj@ach containing a point with
coordinates: andb for every choice oti < b. We interpret this point differently in each
of the regions. To explain this interpretation, it is coneer to introduce a shorthand that



uses open set notation for pairs of closed sets, writing A’ for (A, A"). Specifically,
f_l(zay] = (f_l(iooay]af_l(ioov:r])a
flzy) = (F Mz 00), fH [y, 00)),
f_l(xay) = (f_l(—O0,00),f_l(—OO,I'] Uf_l[yaoo))'

If a point with coordinates: andy lies in the bottom region, we think of it as the space

Figure 2: Points in the pyramid are absolute and relativediogy groups. Monotonic paths are
zigzag modules, any two of which differ by a finite number ofydaVietoris diamonds.

f~Yz,y]. However, if the point lies in the left, right, or top regiowe think of it as
Y, yl, f~Yz,y), or f~1(x,y), respectively. If we now taker < » < y < z and
consider the pointéw, y), (w, 2), (z,y), and(x, z), we get a Mayer-Vietoris diamond in
each region; see Figure 2. This is easiest to see in the clowaual case sincér, y] =
[w,y] N [z,2z] and[w, z] = [w,y] U [z, z]. In the closed-open case, we hgveoo) =
[w, 00) N [z,00) andw, 00) = [w, 00) U [z, 00) as well agz, o0) = [z, 00) N [y, o0) and
[y, 00) = [z,00) U [y, 00). Similar computations verify the diamond in the remainiwg t
cases.

By repeated application of the diamond, we can generate amptanic path from the
one along the bottom edge of the square. Each path is thusadeddy spaces as de-
scribed, and applying the homology functor gives a zigzaguteof absolute and relative
homology groups. The latter arise when we move the left drtrggnd of the path, which
can be done without the Mayer-Vietoris diamond becausedhresponding spaces are and
stay empty so that the module remains unchanged. Besidésviteset zigzag along the
bottom edge, we are particularly interested in the pathgllbe upward slope, which trans-
lates into the extended filtration of (2). Its midpoin{iscc, ), the center of the square,



which results inH(f ~!(—o0, 00)) = H(X). For this reason, we think of the center as the
apex of a pyramid, as viewed from above.

REMARK. As a partial justification for the notation with open setg, mvention that the
homology group of the preimage of the interyal y), if computed with infinite chains, is
isomorphic to the relative homology group @[z, y], f~'(x) U f~1(y)). By excision,
this is isomorphic to the relative homology groud ¢f * (—oo, oc], f =1 (—o0, 2] U f~1[y, 00)).

2.3 Perturbations

The reader who wishes to learn how to read the homology ofléviel sets can safely skip

Section 2.3 and now continue with Section 3. However, toedfiitiate the robust from

the non-robust homological information in these readimgsneed to first understand the
subgroups of homology that give meaning to this concept.

Well groups. Suppose that we have a continuous mappingX — Y between topo-
logical spaces. Given a subgetC Y, we review here the definition of the well groups
Ua(r) for each radius: > 0. WhenA is clear from context, we will drop it from the
notation and simply writéJ(r), by which we mean the direct sum of groupg(r), for
each homological dimensign We will also need the assumption thfat! (A) has homol-
ogy groups of finite rank in each dimension. In addition to iteppingf, we assume a
subspacé of C(X,Y), the space of continuous mappings frénio Y, requiring thatP
containsf. For example? might consist of all mappings homotopic fo We assume
a metric onP and write|| f — hl|, for the distance between two mappings. We éadin
r-perturbationof f if || f — hl, < r. GivenA C Y, we introduce theadius function
fa : X — R, by settingfa(x) to the infimum value of- for which there exists an-
perturbatiom € P with h(z) € A. We filterX via the sublevel sets of the radius function,
settingX,.(fa) = f,'[0,7]. Forr < s, there is amagy® : H(X,.(fa)) — H(Xs(fa)).
The preimage of\ under anyr-perturbatiom: of f will obviously be a subset af,.(f4),
and hence there is a map on homology,; H(h=1(A)) — H(X,.(fa)). Given a class
a € H(X,.(fa)) and anr-perturbatiorh of f, we say thatv is supportedoy h if « € im jp,.
Thewell groupU(r) C H(X,.(fa)) is then defined [10] to consist of the classes that are
supported by alt-perturbations off:

U(’I“) = ﬂ imjh.

Ih=Fllp<r

Forr < s, the mapfy® restricts to a mapJ(r) — H(X,(fs)). On the other hand,
H(Xs(fa)) containsU(s) as a subgroup. It can be shown thids) C f,"*(U(r)) whenever

r < s; see [10]. In other words, the rank of the well group can omgréase as the thresh-
old value increases. We call a valuerot which the rank of the well group decreases
aterminal critical valueof f,. Thewell diagramof f andA is the multiset of terminal
critical values offy, taking a valué: times if the rank of the well group drops layat the
value. Often we will refer to this diagram as thebustnes®f the preimagef ~1(A). In
this paper, we focus on the ca¥%e= R andP = C(X,R), lifting the usual metric on
R to P by defining||f — hll, = ||f — k|l = sup,ex |f(z) — h(x)|. In this case, the



radius function satisfiegs (x) = inf,ca | f(z) — a|. In general, the relationship between
the terminal critical values and the homological criticalues off, is not completely un-
derstood. However, i/ = R andA is a point, we will see that the former is a subset of the
latter. We get more complicated relationships wieis an interval.

Example. Consider the toruX, as shown in Figure 3, along with the vertical height func-
tion f : X — R and the spacé = {a}. The preimage of, f~'(A) = f,'(0), consists

of two disjoint circles on the torus; hence there are two congmts and two independent
1-cycles, all belonging to the well group at radius-or small values of, X,.(f4) consists

of two disjoint cylinders. The homology has yet to changettfermore, although the proof
will come later, all classes still belong to the well grouptheese small radii.
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Figure 3: Left: the torus and the preimage of the intefwalr, a+r]. Right: the extended persistence
diagram of the vertical height function. Each point is la&kby the dimension of the corresponding
homology class. The dark shaded portions of the diagranesept the homology of ' [a—, a-+r].

Now consider the value af shown in Figure 3. For thig, the sublevel seK, =
X,-(fa) consists of two pair-of-pants glued together along two cammircles. We note
thatHy(X,.) has dropped in rank by one, while the rankhf(X,.) has grown to three. In
contrast, the rank dfl; () is less than or equal to one. Indeed, the functionX — R,
defined byh = f — r, is anr-perturbation off and the zero set of the corresponding
distance functionh, ' (0) = f~'(a + r), is a single closed curve. Since the rank of the
first homology group of that curve is one, and since the rarikigf, can be no bigger than
this rank, the well groupJ; () can also have rank at most one. That it does in fact have
rank exactly one will follow from our results in Section 4.

Relative well groups. Since the pyramid involves relative homology groups, itnsgee
wise to extend the definition of well groups into the conteixtedative homology. While
this notion is new, it follows the above ideas closely so firasenting the definition in this
background section seems appropriate. Assume again thiaaweea continuous mapping
f : X — Y between topological spaces, as well as a subspaife”’ (X, Y) that containg
and is equipped with a metric. Given a nested paic A of subspaces df, and a radius
r > 0, we note thaK!. = X,.(fa/) is a subset oK, = X,.(fa). For each-perturbatiom



of f, there is an inclusion of pairg—*(A), h~1(A")) — (X,,X.), which induces a map
Jn s H(hYH(A), h~1(A)) — H(X,,X.) between relative homology groups. Tiedative
well groupU 4 4/ (r) is defined to be the intersection of the images of these makent
over allr-perturbations off:

U(A,A/)(T) = ﬂ lmjh
lh=fllp<r

When a distinction is needed, we will refer to the previousaroof well groups aabsolute
well groups.

3 Combinatorics of Homology

In this section, we present the first half of our point calsulshowing how to read the
homology of a level or interlevel set from the extended stesice diagram. The crucial
technical concept is that of a basis of the pyramid of zigzaglutes, which we establish
by strengthening the Pyramid Theorem in [6].

Flipping abasis. We construct a basis for the pyramid one step at a time, byiflipihe
basis of one zigzag module to the next. For this purpose, wsider two zigzag modules
that differ at one position, and we assume that there is a Mdigtoris diamond serving
as a connecting bridge between the two modules at that @osibrawing the diamond
with the intersection at the bottom and the union at the tepn 5), we say the diamond
connects théower module with theuppermodule. Given a basis of the lower module, we
can show that we can construct a basis of the upper modulesththtwo bases agree on
the overlap. We refer to this operationfigpingthe first basis to the second.

BAsis FLIP LEMMA. Given two zigzag modules that differ by a single Mayer-viet
diamond, we can flip any basis of the lower module to a basisetipper module.

PrROOF. We give a proof by construction. Writinfe: } for the basis of the lower zigzag
module, we describe a badis; } of the upper zigzag module that differs from the lower
one only at the positiofat which the modules differ; as in (5). We thus at onces$et e,
forall k # j, and the main task is then the construction ofqtpePut briefly, our rule will
be thatv! # 0 iff an odd number of}_,, €}, €}, , are non-zero. We give more specifics
via a case analysis. The cases are labelled pictoriallj bldck dots denoting non-zero
classes, showing only the positions- 1, 5,5 + 1.

CASELl (- —~<): We havee’ | # 0 ande} = ¢!, = 0, and define! as well as the
advancing map using the Mayer-Vietoris diamond, namély- a; 1 (e_, ), which
is non-zero by exactness and becaq-se 0.

CASE2 (\, —~): Again we set) = a;_1(e;_,), which is zero by exactness and be-
causee) # 0.

CASE3 (\,~): We setv) = a;_1(e}_,) = bj(e}, ), which in this case is non-zero.
Indeed, if it were zero, then, by exactness, the pgir ,, 0) would be in the image

10



of the maph;_; @ a;. By the direct-sum decomposition of the maps in the basis, th
would imply thata;(e;) = 0, a contradiction.

CAse4 (.~ " ): We havee! # 0 ande)_; = e, = 0. If there are/ > 0 indicesi of
this kind, then the orthogonal complement to the image oftpc;, defined below,
has rank/, as we prove shortly. We pidiclasses; that span this complement. Since
v; maps tee’; via the connecting homomorphism of the Mayer-Vietoris sstpe, the
homological dimension of’ is one higher than that ef..

CASE5 (.~ -): Thisis symmetric to Case 2, and we s¢t= b; (e}, ) = 0.
CASE6 (.-~ ): This is symmetric to Case 1, and we sgt=b;(e}, ;) # 0.

Note first that we now have interval modulb%} in the lower zigzag module, and interval
modules{v;'-} in the upper zigzag module. To show that the latter are indestdnands, we
only need to verify that the non-zero classvgiorm a basis oH(V, V"), the new group in
the upper zigzag module. Using the notion in (5), weElelenote the vector space spanned
by the pairg(e}_,, ¢’ ), noting thatE is a subspace di(C, C’') & H(D, D’), but because
of Case 3 it is not necessarily the entire direct sum. We denshe subspacdsy of E
spanned by the paitg’_,,e¢’,,) in each CaseV, for1 < N < 6. These subspaces are
independent and span the entire splack other words, zero is the only element common
to any two of the subspaces, and the ranks of the subspacepaddhe rank oE.

The case analysis suggests a map E — H(V, V') with ¢;((e}_,, ¢}, ,)) = v}, if
(e5_1,€e5,1) # (0,0), and zero otherwise. Sindg = 0, this map is zero o4, but it
is also zero ork; andEs. Furthermoreg; is injective when restricted tB,, Es, andEg.
We proceed to show that the images of these latter threensgazes undet; are inde-
pendent of one another. To derive a contradiction, we finspese that; (E;) N ¢;(Eg)
contains a non-zero class. Then there must €xisd) € E; and (0,3) € Eg with
aj—1(a) = b;j(B8) # 0. Hence,(a, 8) € ker(a;—1 & b;), which, by exactness, tells us
thata € imb;_;. But this contradicts the direct-sum decomposition of thapiby_;.
Next, suppose that;(E;) N ¢;(Es) contains a non-zero class, which means there exists
(a,0) € E; and(y,8) € Es such thata; (o) = b;(8) # 0. As above, this implies
that (o, 8) € ker (aj—1 ® b;), and we reach the same contradiction. Finally, a symmet-
ric argument gives; (Es) N ¢;(Es) = 0. We conclude that;(E1), ¢;(Es), andc;(Eg)
are independent subspacesHtfV, V’). In Case 4, we picked a basis for the orthogonal
complement to their span; all together, we have a basi§¥t V'), as required.

Establishing a basis. The Pyramid Theorem in [6] establishes an explicit bijattie-
tween the interval modules that arise in the decompositiaang two zigzags within the
pyramid. We strengthen this result by establishing based time zigzag modules in such a
way that the basis elements correspond to the intervalsespe:ct the same bijections. We
call this abasisof the pyramid. To construct it, we note that the paths in tyramid are
connected by Mayer-Vietoris diamonds. We can thereforafbpsis of the level set zigzag
upwards through the entire pyramid via repeated applicatfdhe Basis Flip Lemma.

PYRAMID BAsSIS THEOREM. A basis of the level set zigzag module extends to a basis
of the entire pyramid.
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We now give an explicit description of how the interval maekibf the various paths in
the pyramid relate to each other. A convenient referendeisndescription is the extended
filtration (2), which follows the upward slope through theddllie of the pyramid. Its first
half is parameterized from oo to oo, and its second half fromo back to—oco. Let now

x andy be two points along the upward slope, withto the left ofy. We distinguish
between the ordinary case K y, both in the first half), the relative casg € x, both in
the second half), and the two extended cases: (y andy < z, with = in the first half
andy in the second half). For each case, we sketch how the basieetef the interval
corresponds to basis elements of other homology groupgiur&ié. As a general pattern,

+1

ordinary extended

=1
extended relative

Figure 4: The basis element that corresponds to the inteoralx to y along the upward slope maps
to all spaces between the paths of its two endpoints. Thesiguares show the pattern for the four
different types of intervals.

the two points trace out two curves consisting of segmerntis slbpest45° that reflect
before they hit the vertical sides and end at the horizoidaksof the square. The reason
for the slopes are Cases 1, 2, 5, and 6 in the proof of the Bagikémma, and the reason
for the reflection is the local change in the zigzag structatesed by moving the terminal
zero group up. The two curves cross at one point inside tharsgand the location of
that point is characteristic for the case (the triangulgiae on the left in the ordinary
case, at the top and at the bottom in the two extended caskenahe right in the relative
case). The crossing is caused by Case 4, in which the comdspoe between the basis
elements is constructed via the connecting homomorphighedflayer-Vietoris sequence
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and therefore comes with a shift in homological dimension.

Turning thetable. The regions in Figure 4 show all the spaces represented bysgai
the pyramid to which the basis element corresponding tortteavial [z, y] is relevant. We
are now interested in the inverse question: which basis esisrare relevant to a given
space? More specifically: which intervals in the decompmsiovf the extended filtration
(2) map to the basis of the homology group of the space repteséy a point with coor-
dinatesa andb? We answer this question by considering the following sgiores of the
p-dimensional persistence diagram:

Apla,b] = {(z,y) € Ord,(f) |z < b<y}U{(z,y) € Extp(f) | z < b,a < y},
o,la,b] = {(z,y) € Extp(f) | b <z,y <a}U{(z,y) € Rel,(f) |y <a <z},
Mpla,b) = {(z,y) € Extp(f) |a <y <bU{(z,y) €Rel,(f) |a <y <b<a},
0,(a,0) = {(z,y) € Rel,(f) |y <a <z <b},

Ap(a,b] = {(z,y) € Ordy(f) |z < a <y < b},

0,(a;b] = {(z,y) € Ordy(f) |a <z <b<y}U{(r,y) € Exty(f) |a <z <b},
Mp(a,b) = {(x,y) € Ord,(f) |z <a<y}U{(z,y) € Ext,(f) | z < a,b <y},
0,(a,b) = {(z,y) € Extyp(f) | a <z,y <b}U{(z,y) € Relp(f) [y <b <z},

Q

>

& %
) “%
‘(\

>
& %

Figure 5: The triangle design of the persistence diagranwistgpthe regions\ and e for the four
types of intervals in darker shading. When we collect thenfzoio compute the rank of theth
homology group, we shift the homological dimension of aégsas shown.

displayed in Figure 5 in which we have also introduced a newd,far our purposes more
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convenient, way of drawing the extended persistence diagvée have glued the domains
of the three sub-diagrams and drawn the result as a righedmgangle. In this triangle,
the birth and death axes go froawpo up to+oo and then continue on back teco. In other
words, we flip the extended subdiagram upside down and guéitmerly) upper side to
the upper side of the ordinary subdiagram. Similarly, watethe relative subdiagram
by 180 degrees and glue its (formerly) right side to the right sitithe (flipped) extended
subdiagram. After gluing the three domains, we rotate trstgdeby —45 degrees so the
triangle rests on its longest side, consisting of the diatpm the ordinary and relative
subdiagrams. The diagonal of the extended subdiagram ighwwertical symmetry axis
passing through the middle of the triangle.

REMARK. There is a straightforward translation of this triangudasign to the repre-
sentation of persistence advocated in [4]. Namely, dravoscisles right-angled triangle
downward from each point in the multiset and call the horiablower edge the corre-
spondingbar. The barcodeis the multiset of bars, one for each point in the diagram.
Similarly, we can translate the triangular design into thesse design of the pyramid by
cutting along the vertical axis, turning the right triangieside-down, and gluing the two
triangles along their hypotenuses.

Reading interlevel sets. The purpose of the multisets defined above is to offer a conve-
nient way to read the absolute or relative homology of arrlietel set from the extended
persistence diagram. We need some definitions to combirieualtypes into one. First,
we let B be the collection of interval modules in the decompositibthe extended filtra-
tion (2). As mentioned earlier, this collection is in bijgetcorrespondence with the points
in Dgm(f). We writeV = (B) for the abstract vector space spanneddyand we let

V = {(B') | B' C B} be the collection of vector spaces spanned by subsets dfdkis.
Second, we write

Ala 81U gpialast]  if T = [a,1],

B Apla,b) U gpt1fa,b) if I =a,b),

WalD) = 3 N o] it 1= (o8]
Ap—1(a,b)U gp(a,b) if I =(a,b),

for the region of points in the persistence diagram thatespond to the basis elements of
H,(f~1(I)), and call it apair of wings With these concepts, we have the following result,
which implies that the rank dfi,,(f~1(1)) is the number of points iV, (1):

INTERLEVEL SET LEMMA. For each dimensiopand each interval whose endpoints
are homological regular values, there exists an isomonpttigt takedH,,(f~!(1)) to the
vector spac&, (I) € V spanned by the basis vectors corresponding to the poiit, ().

PrRoOOF. Write B = {e’} and let{v’} be the basis of the grou,(f~'(I)), wherel is an
interval with endpoints < b that can be closed, closed-open, open-closed, or open. The
claimed isomorphism is then the linear mapH,,(f~1(I)) — V defined byy(v?) = {e’}
for all non-zerav’.

To understand why the image gftonsists of the intervals that correspond to the points
in W,(I), we need to recall the transformation rules sketched inrEigu Consider for
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example the closed interval cages [a, b, for whichW,,(I) = Ap[a, b]Ugp+1[a, b]. Since
the interval is closed, the homology group is representethéyoint(a, b) in the lower
triangular region. To lie in the dark shaded region, thimpaiust satisfy the constraint
x < b < yinthe ordinary case; < b anda < y in the first extended case, and< b
anda < y without dimension shift in the second extended case. Thexpialities define
Apla, b]. Furthermore, we gét< x andy < a with dimension shift in the second extended
case, and) < a < x, again with dimension shift, in the relative case. Theseuadities
defineg,+1[a, b], which completes the proof in the closed case. For a prodfetiosed-
open, open-closed, and open cases, note that the poineseeging,(f~*(I)) are found
in the right, left, and top triangular region of the pyramé&hd then argue in a similar
fashion.

4 Combinatorics of Robustness

The definition of well group given in Section 2 involves an aaotable number of pertur-

bations, which give rise to the intersection of a potentiige number of subgroups, and
as such does not seem amenable to computation. In thisrseegashow that the situation

in the real-valued case is simpler, and that we are able tbthesabsolute and relative well
groups directly from the extended persistence diagram. &ginbwith a consequence of
the Mayer-Vietoris sequence, which provides the main teethimgredient of our proofs.

A corollary of Mayer-Vietoris. For convenience, we establish the following notational
convention, wherein we reuse the same letter in differemistoWe will need it for abso-
lute and for relative homology groups. To avoid repetitior, state it now for the more
general relative case. Lettild C U andV’ C V be pairs of topological spaces, we
write (U, U’) — (V,V")if U C VandU’ C V’. This inclusion of pairs induces a map
u: H(U,U’) — H(V,V’") on homology groups, and we writ¢ = im u for the image of
this map. Note thall is always a subgroup &f(V, V'), namely the subgroup of homology
classes that have a chain representative carrig@b¥’). Note also that the rank &f can
never exceed the rank 6f(V, V). Suppose that, furthermor€l, ') — (U,TU’). Then,
from the sequence of map§T,T') — H(U,U’) — H(V,V’), we see thal, the image
of H(T, T’) in H(V, V"), must be a subgroup &f. The following lemma is a direct con-
sequence of the exactness of the Mayer-Vietoris sequenawever, we will use it often
enough that it seems reasonable to state and prove it fgrmall

MAYER-VIETORISLEMMA. Suppose the pair of topological spacés C V can be
decomposed @8 = CUD andV’' = C' U D', whereC’' C C andD’ C D. Set(E,E’) =
(CNnD,C’ NnD’). Ifaclasse € H(V,V’) belongs taC and toD, thena also belongs té.

PROOF Following our convention, we use the notation H(C, C') — H(V,V’) for the
map on homology induced by the inclusion(@f, C’) in (V,V’). Similarly, we writed :

H(D,D") — H(V,V')ande : HE,E') — H(V,V’), as well ag, : HE,E) — H(C,C’)

andey : H(E,E’) — H(D,D’). Note thatC = imc, D = imd, andE = ime. Consider
now the relevant portion of the Mayer-Vietoris sequenceg¥arVv’):

(ecaed)

H(E,E) H(C,C') @ H(D, ') ——%5 H(V, V).
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By assumptiong € C, so there exists some. € H(C, C’) such that(a.) = a. Similarly,
there exists amyy € H(ID,D') such thatd(ag) = «. This implies that the paita., o)
belongs to the kernel af — d, and thus also, by exactness of the sequence, belongs to the
image of(e., eq). Hence, there exists, € H(E,E’) with e.(a.) = a. andeg(a.) = aq.
In particular, since = c o e., we haves(a.) = «, and thereforex € E as claimed.

In the typical application of the Mayer-Vietoris Lemma, wélwonstruct further pairs
(T,T") — (C,C’) and(B,B’) — (D,D’) such thaix € T N B. From the remark above,
we know thafl C CandB C D. The lemma then applies and we can concludedhatE,
as before.

Thewell group of alevel set. As a warm-up exercise, we first consider the case in which
A'is a single point. More specifically, we suppose that we haxgnapact topological space

X and a functionf : X — R, and we find the well groupd(r) = Ua(r), whereA = {a}

is some point on the real line. In this cadg,(fa) = f, '[0,7] = f~‘[a —r,a+7]. To
state the formula, we distinguish two particular subspades, = X,.(f), namely the
top level setT, = f~!(a + r), and thebottom level setB, = f~!(a — r). Using the
convention from before, we writ€. andB,. for the images oH(T,.) andH(B,.) in H(X,.).

PoINT FORMULA. U(r) = T, N B,, for everyr > 0.

PROOF We prove equality by establishing the two inclusions imtuffo showU(r) C
T, N B, consider an arbitrary classe U(r). We defineh,, = f — r andhpo, = f + 7
and note that they are-perturbations off, with 2.} (a) = T, andh; ) (a) = B,. By
definition of the well groupgq is supported by every-perturbation off, and therefore by
htop @nd byhi,qt. It follows thata € T, N B,.. To showT, N B, C U(r), we consider an
arbitrary classr € T, N B,. and leth be an arbitrary-perturbation off. To finish the proof,
we need to show that is supported by:. We defineC, = h~'[a, ) N X, andD, =
h=!(—o0,a] N X,.. Note thatC,. U D, = X, while C,, N D, = h~*(a). Furthermore, the
inequality || — f||, < r implies thatT, C C, andB, C D,. By the Mayer-Vietoris
Lemma,« is supported by ~!(a), as required.

REMARK. The Point Formula implies that the well group for a Morsedhtion f can
change only at critical values of the functigpn, whereA = {a}. In other words, terminal
critical values are, in this simple context, just ordinarijical values. Indeed, ifr, s] is
an interval that contains no critical values fif, then there is a deformation retraction
Xs(fa) — X,.(fa) providing an isomorphisril (X (fa)) — H(X,(fa)). Furthermore,
this retraction map¥; onto T, in such a way that that the imagestfT,.) andH(T,)
in H(X;(fa)) are identical. Similarly, the images #f(B,.) andH(B;) in H(X(f4)) are
identical. Hence the well groupr) andU(s) are isomorphic.

The well group of an interlevel set. We generalize from a point to an interval, which
can be closed, closed-open, open-closed, or open. To tHaivendefine the spaces and
maps so that the formula for the well group is the same in ait fases, and indeed the
same as in the Point Formula above. Assume b, setA = [a,b], and letA’ C {a, b}.

16



We thus gelX,. = X,.(fa) = f~ta — r, b+ r] andX’. = X,.(fa), which is the empty set,

fYo—7r,b+r], f~{a—r,a+r], or the union of these two interlevel sets. Correspondingly

we define theop andbottom interlevel sets
T, = fla+rb+r], T.
B, = f_l[a—r,b—r], B;

{fHNatr), fHb+7)},
{fTMa—r), 7' b-rk

see Figure 6. The paifg,, T".) and(B,., B’.) include into(X,., X ) in all four cases. Still

Figure 6: Each vertical strip represeifsand the shaded portions mai®,., C;.) and (T, T}.) on
the left, (X,, X)) in the middle, andB,, B,.) and(D,, D}.) on the right.

using the notational convention from above, we wiitandB,. for the images ofi(T,., T".)
andH(B,,B;.) in H(X,,, X]). The formula for the well groug)(r) = U a(r), is then,
unsurprisingly:

INTERVAL FORMULA. U(r) = T, N B,, for everyr > 0.

PrRoOOF We give the argument for the most complicated of the fouesashenA’ =
{a,b}. The proofs of the other three cases are simpler versionseofame argument.
We may assume + r < b — r, elseX, = X/, which implies that all groups in the
claimed formula are zero and so we are done. To prove thesiocll/(r) C T, N B,., we
consider the twor-perturbationsii,, = f — r andhye, = f + 7, as before. Note that
(Ty, T,.) = hyoh(a,b) and(B,,B,.) = h; . (a,b), and the desired inclusion follows from
the definition of relative well groups. To provie N B,. C U(r), we choose an arbitrary
classa € T, N B,. and anr-perturbatiom: of f. Furthermore, we introduce the following
pairs of subspaces:

C, = h'a,00)N f(—o00,b+7],
C, = (h'a,00) N fH(~00,a+7]) U (A![b,00) N f7(—00,b+1]),
D, = h ' (—o0,b]N f a -7 00),
D, = (h*(—o0,a] N fa—r00))U(h (—o0,b] N f1[b—1,0));

see Figure 6 for a depiction of the open case. Sihde an r-perturbation, we have
(T,,T)) — (C,,C!) and similarly(B,,B!) — (D,,D}). This impliesT, C C, and
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B, C D,, and thereforex € C. N D,. lItis easy to see thaiC, UD,,C. UD.) =
(X,,X!), and also thatC, N D,.,C. N D,) = (h~1(A),h~1(A’)). The Mayer-Vietoris
Lemma thus impliegx € (h=1(A), h=(A’)). Since this is true for alt-perturbationsh,
we havex € U(r), as required.

Including intervals. We again need some definitions to unify the four cases into one
Given two intervald and.J of the same type, we sdyincludesinto ./, denoted ag — J,

if f=1(I) includes as a pair irf ~}(J). Unfolding the definition of the four types and
assumingz < b < ¢ < d, we havelb, ¢] — [a,d], [b,d) — [a,c¢), (a,c] — (b,d], and
(a,d) — (b, c); compare this with the Mayer-Vietoris diamonds in Figuré&2ppose now
that we have intervalg — J, both of the same type. By the Interlevel Set Lemma, there
are isomorphisms that take,(f ' (1)) andH,(f~'(.J)) to groupsG, (1) andG,(J) in V.

The inclusion induces a map on homology, which composes tvéhe isomorphisms to
giveg : G,(I) — G,(J). On the other hand, since the two groups are membeys thfere

is also a natural map froi,(I) to G, (J), namely the one that restricts to the identity on
the span of their shared vectors and is zero otherwise. Nptisingly, g is exactly that
map. We formalize this claim and give a proof.

IMAGE LEMMA. Let]I — J and letG, (), G,(.J) be the correspondingdimensional
groups inV. Then the image of : G,(I) — G,(J) is a vector space i, and its basis is
in bijection with the multiseW,, (1) N W, (J).

PROOF To restate the lemma, we consider the diagram defined byotimelogy groups of
the preimages of the including intervalss— .J, and the corresponding vector space¥in

Ho(f 1) = Hu(f1(J))
T !
G,,(I) _&, Gp(J).

The vertical maps are isomorphisms given by the Interleetll®mma. The map is
induced by inclusion, ang maps a basis vector d,(I) to the same basis vector of
G, (J), if it exists, and to zero, otherwise. Hence, the basisof consists of the vectors
that are common to the bases@®f(I) andG,(.J). This lemma states that we can gety
composingh with the two isomorphisms. Equivalently, the diagram cortesu To prove
commutativity, we consider again the zigzag modules drasvmanotonic paths in the
square; see Figure 2. Sinfe— J, we can find two non-crossing modules, one containing
H,(f~*(I)) and the other containing,(f~*(J)). To get a basis foim h, we translate
intervals from one path to the other, keeping only the onasdbwver bottH,,(f~*(7)) and
H,(f~*(J)). Further translating these intervals to the hypotenusesgive corresponding
points in the persistence diagram. These points are phgtigeones shared by,,(I) and
W, (J). In other wordsim g in V' is isomorphic tdm h, as desired.

18



Reading robustness. The Image Lemma allows us to compute the well groups and the
well diagram associated to a single intenval= (A, A’). The homology off ~!(7) can

be read off the persistence diagram fgfas stated in the Interlevel Set Lemma. Simi-
larly, the homology of(X,, X ), whereX, = X,(fa) andX, = X,(f}), can be read

off the same diagram, as we now explain. By the Interval Féamilne well group for

r is the intersection of the images of the maps: H,(T,,T,) — H,(X,,X!) and

b, : Hy(B,,B.) — H,(X,,X) induced by the inclusions. By the Image Lemma, this
intersection corresponds to a pair of rectangles withinréiggon of f~*(7); see the in-
tersection betweeV, (I) and the dotted rectangles in Figure 7. In the closed case, thi

Figure 7: Reading the robust homology in the four differexges. The shaded region gives the basis
of H,(f~*(I)), while the dark shaded region gives the basis of the wellmutggU,, (r).

intersection gradually recedes to infinity, while in the thalf-open cases, the intersection
disappears whenreaches half the length of the interval. Correspondingkywell group
shrinks gradually in the closed case, while it vanishes dteforer = (b — a)/2 in the
half-open cases. Similarly, the well group vanishes whegachesb — a)/2 in the open
case. However, here it vanishes abruptly. More precidedyrange of the maps andb..,
whichisH,(f~!(a + r,b — r)), approaches the homology group of the suspension of the
level set ata+b)/2, whenr goes towardb — a) /2, before it suddenly becomes zero when

r reaches that limit.

In all four cases, a point contributes to the well group untiéaches a value at which
the shrinking intersection no longer contains the poiniditig this value of is easy since
both rectangles shrink uniformly along all of their sidesonGider for example the case
I = [a, b] illustrated by the upper left design in Figure 7. For a pginty) € Dgm(f), the
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value ofr at which the point drops out of the relevant region is

min{b—z,y —b} if (z,y) € Ord
min{b—x,y —a} if (z,y) € Ext
(z,y)
(z,y)

—~

f) N Ala, b],
f) N Ala, 0],
f) N ola,b],
f) N ola,b.

The well diagram is the multiset of the values we get from thim{s in the persistence
diagram.

)

—~

c Ext
€ Rel

min{x —b,a —y} if

)

—~

min{z — a,a —y} if

)

Measuring the difference. We can interpret the rank of the well group as a measure of
the similarity between the image of the mgp: (T,,T,.) — (X,,X') and the image of
the mapb,. : (B,,B.) — (X,,X/). Alternatively, we could use the cokernels of these two
maps to measure their difference. Indeed, it is not difficmlprove counterparts of the
Image Lemma for cokernels as well as for kernels.

CO/KERNEL LEMMA. Let] — J and letG,(I), G,(J) be the correspondingdimen-
sional groups inV. Then the kernel and cokernel gf G,(I) — G,(J) are vector spaces
in V, the basis oker g is in bijection withW,(I) — W,(J), and the basis ofok g is in
bijection withW,(J) — W, (I).

To measure the difference, we would therefore take the fadge sum of the two coker-
nels. Consider for example the open case. By the above lemeget a basis ofok t,.
andcok b, by settingJ = (a+r,b—r) and first setting to I; = (a+r,b+r) and second
to Iy = (a — r,b—r). The basis of the sumpk t, + cok b,., is in bijection with the union
of the two multisets of points, which 18/, (J) — W, (I1) — W,(I2).

5 Discussion

The main contribution of this paper is the introduction of §hoint calculus for homol-
ogy computations of level and interlevel sets. This congarimterlevel sets defined by
closed, half-open, and open intervals, images, kernetscakernels of maps induced by
inclusions, and the robustness of homology as defined bygsellps. The point calculus
provides a compact interface to a wealth of homologicalrimfation that can be useful to
researchers with and without background in algebraic tmpolFor the expert, it provides
a compact summary of information that may be used to forrawtahjectures about the
topology of spaces and of functions. For the non-experinteeface offers an intuitive ap-
proach to understand the topology of datasets that by-paélseentroduction of algebraic
topology foundations. It is directly applicable to datafie form of continuous functions,
which is common in medical imaging and in scientific visuatian.

We conclude by formulating an open question aimed at cakgihtjon two- and higher-
dimensional notions of robustness. This paper providefiao to computing robustness
whenY = R and perturbations are measured usingithe metric, and [3] shows that our
results also hold for a broader class of metric function epatn [9], the authors give an
algorithm whenX is an orientabl@-manifold,Y = R?, andA is a point. Algorithms for
other cases are not yet known.
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