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Abstract

Topological statistics, in the form of persis-
tence diagrams, are a class of shape descrip-
tors that capture global structural informa-
tion in data. The mapping from data struc-
tures to persistence diagrams is almost every-
where differentiable, allowing for topological
gradients to be backpropagated to ordinary
gradients. However, as a method for optimiz-
ing a topological functional, this backprop-
agation method is expensive, unstable, and
produces very fragile optima. Our contribu-
tion is to introduce a novel backpropagation
scheme that is significantly faster, more sta-
ble, and produces more robust optima. More-
over, this scheme can also be used to produce
a stable visualization of dots in a persistence
diagram as a distribution over critical, and
near-critical, simplices in the data structure.

1 Introduction

In its early days, topological data analysis (TDA) was
viewed as being in competition with other methods
and models in data science, and much of TDA research
proceeded independently from the state-of-the-art in
the machine learning space. In recent years, however,
the role of TDA as a component in a larger data anal-
ysis pipeline has come to the forefront. One can divide
the literature into the following streams:

1. Using TDA to extract features from data that are
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then fed into standard machine learning or statis-
tics pipelines. Cf. Bendich et al. (2016), Brown
and Knudson (2009), and Gamble and Heo (2010).

2. Using topological signatures as measures of model
complexity. Cf. Gebhart et al. (2019), Guss and
Salakhutdinov (2018), Corneanu et al. (2019), and
Rieck et al. (2019).

3. Designing neural network architectures that can
handle topological signatures. Cf. the PersLay
architecture of Carriere et al. (2020).

4. Incorporating topological terms into classical loss
functions. Cf. Chen et al. (2019) and Hu et al.
(2019).

As this work belongs to the final stream above, let
us consider the prior work in greater depth. Chen
et al. (2019) propose adding a regularizer term to
the loss function of a complex model that penalizes
the topological complexity of the decision boundary.
They introduce an efficient algorithm for computing
the gradients of this topological penalty, implement it
in conjunction with a standard kernel classifier, and
demonstrate improved results for both synthetic and
real-world data sets. The computational tractability
of their approach comes from the fact that the homo-
logical dimension of interest is zero, where persistence
computations are particularly fast.

Hu et al. (2019) propose a novel framework for build-
ing a neural network that maps an image to its seg-
mentation. They introduce a topological loss into the
training phase by asking that the model output ap-
proximate the ground truth segmentation in a metric
that combines cross-entropy and the 2-Wasserstein dis-
tance on persistence diagrams. To alleviate the insta-
bility of topological backpropagation and the relatively
expensive computational cost of persistent homology,
their framework works with one single, small patch
of the image at a time. Experiments on natural and
biomedical image datasets demonstrate that the incor-



A Fast and Robust Method for Global Topological Functional Optimization

poration of topology provides quantitatively superior
results across a host of measures.

The focus of this paper is not classification or seg-
mentation, but topological functional optimization.
That is, our goal is to optimize a functional on the
space of shapes that has both a classical, machine-
learning component (approximating a fixed, input im-
age in mean squared error (MSE), cross entropy, etc.)
and a topological component, e.g. αΦ(PD(f)) + (1 −
α) MSE(f, f0). Our proposed framework is naturally
unsupervised and can accept a wide variety of user-
specified functionals. Moreover, it applies to functions
defined on arbitrary simplicial complexes.

Here is a sample list of useful image optimization tasks
covered by our framework:

• Topologically accurate signal downsam-
pling. It is often prohibitively expensive to trans-
mit large signals. One can cast downsampling as
the problem of mapping a signal into a lower-
dimensional space (either a shorter signal or a
signal belonging to a simple parametrized family)
while minimizing some measure of distortion. By
incorporating a topological loss into this optimiza-
tion task, we can ensure that our downsampling
preserves key structural features that may be im-
portant for further analysis and classification. Cf.
Poulenard et al. (2018).

A possible concern is that downsampling may af-
fect the scale of the topological structures picked
up. However, for many purposes, local topology is
indicative of noise and presents an obstruction to
the learning task. For example, in the cell segmen-
tation task shown in Figure 6, the segmentation
is accomplished by optimizing for 1-dimensional
homology on large scales. The cell images con-
tain small-scale 1-dimensional homology that cor-
respond either to noise or to local structures that
are not entire cells. Moreover, there already exist
effective techniques for optimizing local topology
(Hu et al., 2019).

• Image simplification. Topological data can be
used as a measure of image complexity. By defin-
ing a functional that penalizes small-scale topo-
logical features, we obtain a scheme for removing
topological noise from images. Cf. Edelsbrunner
et al. (2006).

• Enforcing correct topology. In contrast with
the prior example, there are settings in which we
believe an image ought to exhibit particular topol-
ogy at a given scale, such as a certain number of
connected components, the existence of a cycle
or void, etc. By defining a functional that pe-

nalizes distance from this prescribed topology, we
can produce a modified image with the correct
topology.

The challenges of topological functional optimization
are three-fold: (1) topological gradients are very ex-
pensive to compute, (2) the mapping from topolog-
ical gradients to ordinary gradients (defined on the
image space) is extremely unstable, and (3) topology
can be made or broken by changing individual pixels,
so the optima produced via straightforward gradient
descent are fragile. To address these difficulties, we
introduce a novel topological backpropagation scheme
that is faster, more stable, and produces more robust
optima than traditional methods.

Section 2 reviews the literature on topological back-
propagation and demonstrates how gradients in the
space of persistence diagrams can be pulled back to
produce gradients on the original data structure. This
is followed by an analysis that explains why the tra-
ditional method is unstable, slow to compute, and
produces undesirable optima. In Section 3, we intro-
duce our novel approach to topological backpropaga-
tion via smearing the topological loss. This smearing
procedure requires computing the topological statis-
tics of many approximates of our data. We then in-
troduce STUMP, our scheme for quickly generating
these approximates, combining their gradients, and
further stabilizing the result. In Section 4, we con-
sider three synthetic optimization tasks and compare
the results of “vanilla” topological optimization with
our new, smeared approach. We perform a robustness
and speed analysis, demonstrating that our method
outperforms the traditional one in both metrics. In
Section 5, we discuss how our pipeline can be used to
provide stable visualizations of dots in a persistence
diagram and a simple generalization of our pipeline to
point cloud data.

2 Topological Backpropagation

2.1 Persistent Homology

The content of this paper assumes familiarity with the
concepts and tools of persistent homology. Interested
readers can consult the articles of Carlsson (2009) and
Ghrist (2008) and the textbook of Edelsbrunner and
Harer (2010). However, we provide a brief recapitula-
tion here.

Given a simplicial complex D, a filtration is a func-
tion f : D → R such that f−1((−∞, t]) is a simplicial
complex for every t. The persistence diagram of f , de-
noted PD(f), is then a multiset in {(b, d) ∈ R2 | b < d}
that records the birth and death times of homological
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features as the parameter t varies. The p-Wasserstein
metrics, or Bottleneck metric when p =∞, are popular
metrics on the space of persistence diagrams. These
metrics are similar to the usual Wasserstein metrics
with the important caveat that mass can be freely
added to or removed from the diagonal. When we
consider loss functionals Φ defined on persistence di-
agrams PD(f), Φ will typically be the p-Wasserstein
distance from a thresholded PD(f) to the empty di-
agram raised to the p power or negative this value.
Explicitly, if PD(f) = {(bi, di)}ni=1 then Φ(PD(f)) =∑

i∈I |bi − di|p where I = {i | di − bi > ε} for some
threshold value ε. We will refer to these functionals Φ
as the p-Wasserstein norms in the sequel.

The incorporation of persistent homology into model
training is based on three properties of persistent ho-
mology:

• (semantic) Topological data can be used to mea-
sure a host of important, yet abstract, concepts
in data analysis: noise, connectivity, consistency,
shape, boundary, scale, dimension, etc.

• (computational) Persistent homology can be com-
puted efficiently.

• (submersion) The differential of the map from
model parameters to persistence diagrams has full
rank almost everywhere. In the language of differ-
ential topology, such a map is called a submersion.

It is this final, submersion property that allows for
the backpropagation of topological gradients to gra-
dients in the parameter space of the model. We now
make this backpropagation scheme precise. Let our
model g be parameterized by a set of parameters αj ,
let {bi, di}i∈I be the set of birth-death times of the
persistence diagram PD(g), and let Φ be a functional
on the space of persistence diagrams. In order to op-
timize Φ as a function of the model parameters αj , we
need to be able to compute the partial derivatives:

∂bi
∂αj

and
∂di
∂αj

.

To compute these derivatives, one can take advantage
of the pairing between birth and death times in PD(g)
and critical simplices of g (this pairing is well-defined
in the generic setting that all critical simplices have
distinct function values). When using a lower-star fil-
tration, one can further simplify this pairing by choos-
ing, for each critical simplex, the vertex whose addi-
tional to the filtration implied the addition of the crit-
ical simplex (there is a unique such vertex under the
generic assumption that all vertex values are distinct).
Let us therefore write π to identify this mapping from

birth or death times to vertices of our discretized do-
main D. Note, crucially, that π is locally constant with
respect to perturbations of the function g. With such
a pairing, we can write the partial derivatives above in
a more tractable form:

∂bi
∂αj

=
∂g(π(bi))

∂αj
=

∂g

∂αj
(π(bi))

∂di
∂αj

=
∂g(π(di))

∂αj
=

∂g

∂αj
(π(di))

We can thus use the chain rule to deduce:

∂Φ

∂αj
=
∑
i∈I

∂Φ

∂bi

∂bi
∂αj

+
∂Φ

∂di

∂di
∂αj

=
∑
i∈I

∂Φ

∂bi

∂g

∂αj
(π(bi)) +

∂Φ

∂di

∂g

∂αj
(π(di))

The partial derivatives ∂Φ
∂bi

and ∂Φ
∂di

must be computed
explicitly for the functional Φ of interest. In Poulenard
et al. (2018), closed-forms of these derivatives are given
for the special cases when Φ is the bottleneck or 2-
Wasserstein distance to a target persistence diagram.

Lastly, it is worth noting that topological backpropa-
gation gives the user the freedom to treat birth and
death simplices separately. This is often desired in
practice, as will be seen in the experiments in Section
4.

2.2 Instability of Topological
Backpropagation

The method of topological backpropagation via per-
sistence dot-critical vertex pairings has a number of
limitations. The most crucial is that of instability. It
is a well-known result in applied topology that persis-
tence diagrams themselves are stable to perturbations
of the underlying function, cf. Cohen-Steiner et al.
(2007) and Chazal et al. (2009). However, no such sta-
bility applies to the location of critical vertices. This
failure of stability was investigated by Bendich et al.
(2019) and presents itself as a challenge to many topo-
logical inverse problems. In our setting, when imple-
menting topological backpropagation in functional op-
timization, this translates into unstable gradients.

2.3 Computational Cost of Topological
Backpropagation

Software like GUDHI (Dlotko, 2020) provides for fast
calculation of persistence dot-critical vertex pairings.
In principle, computing this pairing is no more ex-
pensive than computing persistence. To see why, let
f : D → R be our function, and let us assume that we
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are in the generic setting that f is injective on the ver-
tices of D. Define F : D → N to map every vertex to
a natural number representing the ordinal position in
which it appears in the filtration induced by f . Thus,
the vertex with the lowest f -value is mapped to zero,
the vertex with the second f -value is mapped to one,
and so forth. The birth and death times of the dots
in the resulting persistence diagram PD(F ) give the
indices of their critical vertices. To transform PD(F )
into PD(f), replace the birth and death indices with
the f -values of the corresponding vertices.

Morozov (2005) showed that the worst-case complex-
ity of computing persistence is cubic in the number of
simplices. When our simplicial complex D is a trian-
gulation of a k-dimensional manifold, the number of
simplices grows exponentially in k with the resolution
of the triangulation. Thus, even for k = 2 and k = 3,
the computation of persistence homology and the per-
sistence dot-critical vertex pairings scales poorly in the
resolution of the image. From a computational per-
spective, it is therefore ideal to compute as few high-
resolution persistence diagrams as possible.

2.4 Robustness of Optima

When the output of topological optimization is per-
turbed, either unintentionally (in lossy communica-
tions) or intentionally (as in an adversarial attack),
the topology of the image changes. An optima is ro-
bust if the value of the topological functional can only
be increased by adding a substantial amount of noise,
as measured in MSE. Because topological backpropa-
gation pins the responsibility for a given topological
feature on a single pixel, it tends to introduce or de-
stroy topology in a very fragile way, as will become
clear in the Experimental Results section.

3 Smearing Topological Optimization

Consider a topological optimization task where the loss
is of the form L(f) = αΦ(PD(f))+(1−α) MSE(f, f0).
We can make this loss function more robust by asso-
ciating to every function f a set of approximate func-
tions S(f), equipped with a measure µ, and replacing
the loss with:

LS(f) = α

∫
S(f)

Φ(PD(g))dµ(g) + (1− α) MSE(f, f0).

Thus, the topological term of our loss function mea-
sures the “average” topology of a set of approximates
to f , weighted via µ. Informally, we call this smearing
the topological loss over the set of approximates.

3.1 Generating Approximates

We now introduce a general scheme for constructing
sets of approximates, given a function f : D → R
defined on a simplicial complex1. The first ingredi-
ent is an open cover U of D. We downsample D
by considering the Čech complex ČU (D), see Figure
1. Each vertex of ČU (D) corresponds to an open set
Ui ∈ U . In order to produce a function on the Čech
complex, we need a rule for averaging the set of values
{f(v) | v ∈ U0

i } for each open set Ui. To that end,
we associate to each open set Ui the probability sim-
plex ∆i on its set of vertices, U0

i . That is, an element
ωi ∈ ∆i is an assignment of nonnegative weights to the
vertices in U0

i such that
∑

v∈U0
i
ωi(v) = 1. We write

ω = {ωi} to denote a choice of element in ∆i for each
i, which thus gives rise to a function fω on ČU (D):

fω([Ui]) =
∑

v∈V (Ui)

ωi(v)f(v).

See Figure 2. The value of fω on a non-vertex simplex
σ ∈ ČU (D) is defined to be the maximum value of
fω on the vertices of σ. To specify how the elements
ωi ∈ ∆i are chosen, we pick a set of measures µ = {µi},
one for each ∆i:

1. If µi is an atomic measure, concentrated on the
center of the simplex ∆i, the resulting downsam-
ple associates to each open set Ui the average of
the values of f on its vertices.

2. If µi is a uniform measure on the zero-skeleton ∆0
i ,

a downsample ω is obtained by randomly picking
a vertex v ∈ U0

i and setting fω([Ui]) = f(v).

3. If µi is a uniform measure on the entirety of ∆i,
a downsample corresponds to taking a random,
normalized linear combination of the values of f
on the open set Ui.

The set of approximates S(f) is the set of all down-
sampled functions fω on the Čech complex, with the
measure as chosen. Since the Čech complex is smaller
than the original complex, the computation of individ-
ual persistence diagrams is accelerated.

3.2 The Smeared Gradient

For a fixed weighting ω, the map f → fω is linear.
The chain rule then implies that:

dΦ(PD(fω))

df
=
dΦ(PD(fω))

dfω
◦ ω.

1The experiments in Section 4 are actually computed
using cubical complexes but are equivalent to the formalism
here via the Freudenthal triangulation.
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Under mild technical assumptions that allow us to
move the gradient under the integral sign, we there-
fore have for α = 1:

dLS(f)

df
=

∫
ω

(
dΦ(PD(fω))

dfω
◦ ω
)
dµ(ω).

This provides a simple formula for computing the gra-
dient with respect to f in terms of the gradients of
the downsamples fω but is not exactly computable
in practice, due to the high-dimensionality of the set
S(f) over which we must integrate. To approximate
this integral, we can, at each step of the optimization,
sample finitely many fω and compute an empirical av-
erage. An even faster approach, which we implement
in practice, is to mirror stochastic gradient descent
by considering a single downsampled fω at each de-
scent step and mixing the gradients via momentum us-
ing Adam (Kingma and Ba, 2015). Taken altogether,
we call our pipeline STUMP: Stochastic Topological
Updates via Momentum and Pooling.

(D;U) ČU(D)

Figure 1: On the left, we see a simplicial complex D
with an open cover U . The corresponding Čech com-
plex is shown on the right. When the open sets of U ,
and all their possible intersections, are contractible,
the topological type of D is the same as that of the
Čech complex; this is the well-known Nerve Theorem.

5 6

4 6

!i

!i = ( 1
4
; 1

4
; 1

4
; 1

4
)

Ui

∆i

f!([Ui]) =
1

4
· 5 + 1

4
· 6 + 1

4
· 4 + 1

4
· 6 = 5:25

5:25

Figure 2: This figure demonstrates how the values of
the approximate function fω are obtained. For a given
open set Ui, a µi-randomly chosen weighting ωi ∈ ∆i

prescribes a linear combination of values in Ui.

Figure 3: The effect of explicitly adding noise in gen-
erating approximates. Both images are the result of
near-identical optimization procedures which only dif-
fered in whether or not inputs were perturbed before
each optimization step. The image on the left, for
which the input had noise added, is smoother than
the image on the left for which the input was not per-
turbed.

3.3 Clarke Subdifferentials

The robustness of the optimization scheme can be fur-
ther improved by considering perturbations of the ini-
tial function f . Here we give two heuristic motivations
for adding explicit noise. The first is the qualitative
effect on results of optimization. For instance, the pic-
ture on the left of Figure 3 is the result of an optimiza-
tion procedure that added explicit noise to the input
before stochastic downsampling while the picture on
the right is the result in the absence of explicit noise.

The second argument involves the gradient sampling
methodology (Burke et al., 2005). When minimizing
an unstable function, a more robust search direction
can be obtained by considering the minimum norm el-
ement of the convex hull of gradients of nearby points.
More precisely, Lemma 2.1 of Burke et al. (2005) states
that if G is a compact convex subset of Rd and g∗ ∈ G
is a minimum norm element of G, then d∗ = −g∗/‖g∗‖
solves inf‖d‖≤1 supg∈G〈g, d〉. In other words, d∗ is a
minimax update direction.

The space of perturbations that will be used in the
experiments in Section 4 is the cube [−ε, ε]d, so G will
be the convex hull of gradients of points in x+[−ε, ε]d.
As a proxy for finding the minimum norm element of
G, one can sample points x1, . . . , xm ∈ x + [−ε, ε]d,
compute gradients gi = ∇Φ(PD(xi,ωi

)) at each of
these points, and find the minimum norm element of
conv(g1, . . . , gm), i.e.

min ‖
m∑
i=1

cigi‖2 subject to c ∈ ∆m−1.

If the gi are pairwise orthogonal, the problem above
has the simple solution ci := ‖gi‖−2/(

∑m
i=1 ‖gi‖−2).

If in addition the norm of each gi is equal, then each
ci would equal 1/m. In other words, under these two
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extreme assumptions, we may approximate a robust
update direction by simply averaging nearby gradi-
ents. We tested the validity of these assumptions for
a particular example, the starting point of the smear
optimization for the blobs experiment in Section 4.

Figure 4: The ij-entry of the matrix on the left is
〈gi, gj〉. The graph on the right shows the values of
c1, . . . , c100.

Figure 4 shows the Gram matrix on the left and the
values of the ci’s defined above on the right when
m = 100. Note that the Gram matrix is somewhat
diagonal and the values of the ci fluctuate very tightly
around 0.01 = 1/m. The degree of orthogonality
among the gi’s corresponds to the degree of instabil-
ity of persistence dot-critical vertex pairings. On the
other hand, the stability of the ci’s reflects the stability
of persistence diagrams to perturbation.

4 Experimental Results2

We now consider a number of topological optimization
tasks and compare the results with and without smear-
ing. Our goal is to demonstrate that smearing greatly
speeds up topological optimization and produces more
robust optima. Though these optimization tasks fall
in the realm of image analysis, we remind the reader
that our framework is applicable anytime one wants to
quickly optimize a topological functional on a simpli-
cial complex. For instance, STUMP could be used to
more rapidly, and perhaps robustly, compute a topo-
logical regularizer of a model representable as a sim-
plicial complex. We have three synthetic experiments:

1. Double well: The image consists of two depres-
sions, or wells, that have some overlap. The goal is
to increase H0 persistence and separate the wells.
This is done by applying topological backpropaga-
tion to the critical vertices responsible for deaths
in H0, i.e. we create H0 by raising a wall between
the two wells, rather than making the wells lower.

2https://github.com/aywagner/TDA-smear

2. Sampled circle: The image consists of a sum of
Gaussians centered at points sampled from a cir-
cle. The goal is to increase H1 and fill in the
circle. This is done by applying topological back-
propagation to the critical vertices responsible for
births in H1, i.e. we want to create H1 by making
the circle appear earlier, rather than raising the
center of the circle.

3. Blobs: The image consists of some amorphous
blobs connected by bridges at middling height.
The goal is to decrease H0, thereby better con-
necting the blobs. This is done by applying back-
propagation to the critical vertices responsible for
deaths in H0, i.e. we want to decrease H0 by
deepening the bridges between them, rather than
raising and flattening the blobs out.

For our three experiments: (a) The persistence region
of interest was [−∞,∞, 50,∞] in birth-lifetime space,
(b) The weighting α in the mixed-loss is (1 − 1/P ),
where P is the total number of pixels in the image.
This balances the topological loss, whose gradient is
supported on a relatively sparse set of pixels, and the
MSE, whose gradient is supported on every pixel, (c)
The learning rate is 5× 10−2, (d) We used the Adam
optimizer (Kingma and Ba, 2015) with 10000 steps,
(e) Each pixel was perturbed independently by adding
uniform noise in the range [−ε, ε]. The level of noise
ε was 50 for both the well and blobs experiment and
100 for the circle experiment, (f) For smeared loss, the
1-Wasserstein norm was used to define the functional,
although the 2-Wasserstein norm also gives good re-
sults. For vanilla topological backpropagation, the 2-
Wasserstein norm was used, as the 1-Wasserstein op-
tima were very poor, and tended not to adjust the
topology at all, (g) GUDHI (Dlotko, 2020) was used
for all persistence computations. (h) Downsampling
was done using method 3 described in Section 3.1.

The results can be seen in Figure 5. We see in all
three examples that the optima produced by STUMP
look more stable and match closely with our intuition
for what the goal of the optimization task should be.
What remains is to compare the robustness and speed
of vanilla and smeared topological backpropagation.

We also have one non-synthetic experiment: cell seg-
mentation. For this experiment, we only run the op-
timization with smearing, due to the unfeasible wait
times of vanilla optimization. We consider the ISBI12
cell image data set taken from Cardona et al. (2010)
that is also studied in Hu et al. (2019). In Hu et al.
(2019), a topological component is added to the loss
function of a neural network trained on supervised ex-
amples of image segmentations. Here our goal is unsu-
pervised image segmentation. To make this a topolog-
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Figure 5: A comparison of vanilla and STUMP op-
tima for three optimization tasks. The images go from
0 (black) to 255 (yellow) in value.

ical optimization task, we set the topological function
to maximize 1-dimensional homology with sufficiently
large persistence (above 70, for these examples), using
a 4× 4 downsampling filter, noise ε = 20, by lowering
the intensity of critical birth pixels. Intuitively, these
one dimensional features are cell boundaries, and the
effect of this optimization is to increase the pixel inten-
sity along the boundaries. The advantage of using the
downsampling filter, in addition to significant speedup,
is that it erases the local 1-dimensional features that
do not correspond to cell boundaries. Figure 6 con-
tains the original image, the STUMP optima, and
the difference between them. Although run for only
5000 descent steps, the difference image already con-
tains the full topological segmentation. To address
concerns that our methodology only works for mean-
squared error, we performed this optimization for both
MSE and binary cross-entropy. The results were sub-
stantially similar, and Figure 6 contains the binary
cross-entropy optimum.

4.1 Robustness

A way of quantifying the extent to which components
in the image are robustly connected is to feed the im-
age to a segmentation algorithm and observe the con-
nected components that it produces. We consider the
random walker segmentation algorithm (Grady, 2006).
Given an input image and a set of markers labelling
phases, the algorithm marks an unknown pixel by con-

Figure 6: STUMP applied to image from ISBI12
dataset. By neglecting local features, STUMP
rapidly produces an altered image whose difference
with the original reflects the segmentation.

sidering a diffusion problem and labelling the unknown
pixel with the label of the known marker whose proba-
bility of reaching the unknown pixel is highest. In our
experiment, for a given q ∈ [0, 1], we choose the mark-
ers to be the pixels whose value is in the top or bottom
q percent of the pixel values. Figure 7 shows the result
of this procedure for the blobs optima from Figure 5
and q = 0.1, 0.2, 0.3. We see that the STUMP optima
in the bottom row is better able to keep the clusters
connected across values of q.

Figure 7: Results of the random walker segmentation
algorithm on the vanilla (top row) and STUMP (bot-
tom row) optima. The columns correspond to different
choices of a thresholding hyperparameter.

4.2 Speed

In all the preceding examples, downsampling was per-
formed by considering adjacent k × k patches of the
original image and, for each patch, applying a ran-
dom element ω of ∆k2−1, chosen uniformly. Hence,
the downsampled image contained k−2 as many pixels
as the original image. In the associated optimization,
this replaces the computation of ∇Φ(PD(f)) with the
faster computation of ∇PD(fω)). Because of this, the
vanilla wells, circle, and blobs experiments took 5015,
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Figure 8: Percentage of loss reduction as a function of
time for the blobs image and uniform noise.

2169, and 3576 seconds, respectively, while STUMP
took 202, 106, and 195 seconds.

Replacing the original gradient with a downsampled
gradient certainly speeds up each step compared to
vanilla optimization, but it remains to show that the
loss function is reduced more rapidly. To this end, we
now return to the third experiment regarding connect-
ing blobs. Since the loss for this experiment consists of
two non-negative terms, the mean squared error and
the total persistence in a region, we may reasonably
compare how quickly various types of optimization re-
duce the starting loss. In Figure 8, we consider four
types and plot the percentage of the original loss re-
duced by each optimization procedure as a function
of time. In red and green, we show vanilla topological
optimization where total persistence is measured using
W 1 and W 2, respectively. We then consider the addi-
tion of stochastic downsampling in orange, where to-
tal persistence is measured using W 1. Finally, in blue,
we add explicit noise before downsampling the image.
The graph on the left corresponds to the blobs image
shown in Figure 5. Within four minutes, both ver-
sions of our procedure have reduced the loss by about
90% while the vanilla methods only manage to reduce
around 25% of the loss after 10 minutes.

One possible explanation for the dramatic increase in
loss reduction in the blobs experiment is the large de-
gree of homogeneity of this image. The second graph
in Figure 8 corresponds to an identical optimization
scheme for a different image. This new image was gen-
erated by sampling uniform noise between 0 and 255.
For this experiment, we see a less extreme increase in
loss reduction afforded by our procedure over vanilla
optimization.

5 Extensions

The methodology of smearing, and the STUMP
pipeline, can also be applied to other settings and pur-
poses.

5.1 Critical Smears

Strictly speaking, the method of topological optimiza-
tion via smearing the loss function does not accom-
plish the task of topological backpropagation. That
is, it works by considering gradients on many differ-
ent persistence diagrams, as opposed to working with
the gradient of the persistence diagram of the original
function f . However, there is a way to use the ideas
of smearing to this end as well, which we call critical
smearing.

In critical smearing, we compute the gradient of the
original topological loss Φ(PD(f)), giving rise to a gra-
dient on the persistence diagram PD(f). We then com-
pute the persistence diagrams of many different func-
tions of the form (f + h)ω, and transfer the gradient
from PD(f) to gradients on these approximate dia-
grams. We then pull back these transferred gradients
to gradients on the Čech complex via persistence dot-
critical vertex pairings, and finally back to gradients
on D via ω, where the gradients are averaged to give
a smeared gradient. If the initial gradient on PD(f) is
supported on a single dot, the resulting smeared gradi-
ent can be thought of as a fuzzy assignment of critical
vertices for this dot.

There are many possible ways to define gradient trans-
fer between persistence diagrams. We propose that
this step be accomplished via finding a matching be-
tween the dots of two persistence diagrams, and hav-
ing points in one diagram inherit the gradients of the
points they are matched with. Fast matchings can
be computed via the Sliced Wasserstein approxima-
tion of the Wasserstein distance (cf. Carrière et al.
(2017)), and that is the approach we adopt here. Con-
sider again the circle in Figure 5, first column, second
row. When we add uniform noise in [−50, 50] and sub-
sequently downsample using 5 × 5 blocks, we obtain
images as in Figure 9. If we set our loss function Φ
to penalize dots in the persistence diagram with life-
time greater than 30, add uniform noise in [−50, 50],
downsample via 5× 5 blocks, sample 1000 times, and
transfer gradients via Sliced Wasserstein (with 20 pro-
jections), the critical smear can be seen in Figure 10.

5.2 Point Clouds

It is relatively straightforward to adjust the above
pipeline for topological backpropagation on point
clouds. Downsampling can be accomplished by ran-
domly sampling a subset of points, and error can be
modeled by randomly perturbing the location of each
point independently.
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Figure 9: Left: Circle with uniform noise added pix-
elwise. Right: Noisy image after pooling with 5 × 5
blocks.

Figure 10: Visualization of the critical smear corre-
sponding to the underlying 1-dimensional circular fea-
ture. The birth cells are in red, and the death cells are
in blue.

6 Conclusion

Our novel pipeline for topological optimization,
STUMP, produces optima that are empirically more
robust, and visually more intuitive, than the tradi-
tional method and with a considerably shorter com-
putation time. The generalizability and parallelizabil-
ity of gradient smearing opens the way to a host of
promising interactions between applied topology and
machine learning.
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