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Abstract
The theory of persistent homology opens up the possibility
to reason about topological features of a space or a function
quantitatively and in combinatorial terms. We refer to this
new angle at a classical subject within algebraic topology as
apoint calculus, which we present for the family of interlevel
sets of a real-valued function. Our account of the subject is
expository, devoid of proofs, and written for non-experts in
algebraic topology.
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1 Introduction and Background
We write this paper to describe a recent development within
algebraic topology that makes is possible to reason combi-
natorially about algebraic concepts. The intention is not to
divorce the topology from the algebra, but rather to find a
more direct, combinatorial route at understanding the alge-
bra. In principle, this opens a road to topology in terms of
homology without going through the demanding rigor these
subjects usually require. Such a short-cut has of course its
dangers, but we feel the risk is worth taking.

From geometry to topology to algebra. Geometry studies
properties of a space that are invariant under transformations
preserving a measure, such as volume, area, or distance. It is
an ancient subject which underlies much of mathematics and
is also widely used in non-mathematical disciplines. Indeed,
geometric thinking is an important pillar of human compre-
hension of this world. A first step toward a more abstract,
topological understanding of space was taken by Leonhard
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Euler in the 18th century, when he noticed that the number
of vertices, edges, and faces of every (3-dimensional) convex
polytope satisfies

#vertices− #edges+ #faces = 2; (1)

see [13]. Today, this is considered the first invariant in al-
gebraic topology. More than a century later, Enrico Betti
introduced what are now known asBetti numbers, one per
dimension, which quantify the connectivity of a space in
each dimension [4]. These numbers are still of central im-
portance in modern topology today. The big breakthrough
toward the establishment of topology as a field within math-
ematics came with the work of Henri Poincaré around the
year 1900; see [20]. In a series of papers, he laid the foun-
dations by realizing, among other things, that the alternating
sum of Betti numbers is an algebraic invariant of a space;
that is: the alternating sum does not change when we deform
the space, provided we refrain from cutting and gluing. To-
day, the alternating sum of Betti numbers is known as the
Euler characteristicof the space, and together with the easy
realization that it equals the alternating sum of faces, we get
a generalization of (1) known as theEuler-Poincaŕe formula.

In topology, two spaces are considered to be the same
when there is ahomeomorphismbetween them, that is, a
continuous bijective mapping whose inverse is also contin-
uous. This is where topology takes its departure from geom-
etry: a small circle is the same as a big circle or indeed as
(the boundary of) a square. To establish sameness, it suffices
to exhibit a homeomorphism, while to establish the oppo-
site requires a proof that no homeomorphism exists. Com-
monly, this is done by constructing an algebraic invariant,
such as the alternating sum of Betti numbers, that differen-
tiates between the two spaces and thus implies the impossi-
bility of a homeomorphism. Under the influence of Emmy
Noether, the initial emphasis on numbers was changed in
favor of a more complete, algebraic characterization with
Abelian groups, thehomology groupswhose ranks are the
Betti numbers. Crucially, her group formulation allows the
systematic transfer of algebraic information from one space
to another via continuous maps, a concept known asfuncto-
riality , which lies at the heart of our approach to homology,
as we will explain shortly.
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From homology to persistence to applications. For the
next step, we take broad inspiration from a mathematical
theory named after Marston Morse, see eg. the classic book
on the subject by John Milnor [17]. Using tools from dif-
ferential geometry, this theory gives a vast generalization of
the early observation by Arthur Cayley [8] and James Clerk
Maxwell [16] that for a smooth surface generically placed in
3-dimensional space, the number of peaks minus the num-
ber of passes plus the number of pits equals the alternating
sum of Betti numbers. In other words, we can recover the
topological information of the surface by considering the se-
quence of contour lines or, alternatively, thecritical pointsat
which all partial derivatives of the height function vanish.

Combining the Morse theoretic outlook with the algebraic
theory of homology, we are now only two small steps away
from the notion of persistent homology. One step is the focus
on the algebraic expression of the change that happens to a
contour line when it sweeps over a critical point, the other is
the realization that critical points generically come in pairs,
and that there is valuable information to be gained from these
pairs. Indeed, the measurement of the difference between
the values of the paired critical points forms a bridge from
topology back to geometry, an ingredient that brought about
a watershed when topological theories suddenly became ac-
cessible to applications in the sciences and engineering.

To apply persistent homology, we need both a space and
a real-valued function. In contrast to Morse Theory, the
function is no longer subordinate to the space and moves
into the center of the investigation. Different application ar-
eas distinguish themselves in the spaces of interest and the
functions they employ. Indata analysis, the data is often
put inside a finite-dimensional Euclidean space, and a com-
mon function is the Euclidean distance to the nearest data
point. The analysis then proceeds through the sequence of
spaces formed by progressively thickening the data set; see
eg. [7, 14]. Invisualization, the space is typically our ordi-
nary2- or 3-dimensional Euclidean space, and the function
is a measurement of interest, such as the heat distribution in a
combustion chamber or the proportionality factor inside mix-
ing fluids [19]. Inshape analysis, the space can be the shape
itself, while the function is chosen to emphasize interesting
features; see eg. [15]. Instructural molecular biology, the
space may be the surface of a protein and the function may
be a measurement of local protrusions and cavities [1, 9].
Our running example is an instance of perhaps the simplest
setup, that of aheight function. Here, we embed a surface
in Euclidean space and map each point to its last Cartesian
coordinate.

Outline. In Section 2, we explain how to draw a diagram
of dots that captures persistent homology. We also provide
the necessary background in topology. In Section 3, we de-

scribe how we can read the homology of interlevel sets di-
rectly from the persistence diagram of a function. In Section
4, we explain how the diagram can be used to reason about
the interaction between different interlevel sets using func-
toriality. We conclude in Section 5 with a discussion of this
paper’s contributions.

2 Drawing
In this section, we describe how we make a record of the
topological properties of a real-valued function. The details
will be important, and we will use a running example to il-
lustrate all steps. As we will see in the subsequent sections,
careful book-keeping will give handsome returns.

(Absolute) homology. We now give an intuitive descrip-
tion of the theory of homology. A formal definition requires
a good deal of algebra, and for that we refer the reader to a
standard textbook, such as [18]. Here, we will confine our-
selves to homology groups for coefficients from the binary
field, which consists of elements0 and1 and addition mod-
ulo 2. Our results generalize to other fields, such as the real
or the rational numbers, but not to non-fields, such as the in-
tegers. Given a spaceX, we have a homology groupHp(X)
for each integer dimensionp, but we will restrict our atten-
tion top = 0, 1, 2.

Briefly, ap-dimensional homology class is an equivalence
class ofp-cycles, as we now discuss. A0-cycle is a collection
of points fromX, a1-cycle is a collection of closed curves in
X (possibly with intersections and self-intersections), and a
2-cycle is a collection of closed surfaces inX (again possibly
with intersections and self-intersections). Given any twop-
cyclesα andγ, we can formally add them to form thep-cycle
α+γ, which we can think of as the closure of their symmetric
difference. We say that twop-cycles arehomologouswithin
X if their sum forms the boundary of a(p + 1)-dimensional
subspace ofX; for example, two points are homologous if
we can draw a path between them entirely withinX. A
p-cycle α is said tobound if it is itself the boundary of a
(p + 1)-dimensional subspace ofX; in this case, we think
of α as being homologous to zero and refer to it as atriv-
ial p-cycle. Ap-dimensionalhomology classis a collection
of mutually homologousp-cycles. For intuition, one might
imagine a0-dimensional class as a connected component of
X, a 1-dimensional class as a loop going around a tunnel,
and2-dimensional class as a closed surface enclosing a void
insideX. We can addp-dimensional homology classes to
produce other ones, and thus the set ofp-dimensional ho-
mology classes forms a vector spaceHp(X), called thep-th
homology groupof the spaceX. We denote the rank of this
group byβp(X) and call it thep-th Betti numberof X. Often
we wish to refer to homology without sticking to a particular
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dimensionp. For this reason, we sometimes use the direct-
sum notationH(X) =

⊕

p Hp(X), although we stress this is
only used to think of all homology groups at once, and we
never add two cycles of different dimension to one another.

Y0

Y

X

Figure 1: A (hollow) torusX, a closed subspaceY of X, and the
boundaryY0 of Y. The way we have drawn it,Y0 is a level set
of the height function on the torus, andY is a sublevel set of that
function.

For example, suppose thatX is the torus andY ⊆ X is
the shaded region as drawn in Figure 1. We will compute
the Betti numbers of both spaces. The torus is connected,
while Y has two connected components; thusβ0(X) = 1
andβ0(Y) = 2. Within the torus, we can find at least two
non-bounding1-cycles: the horizontal loopα formed by the
leftmost circle at the top of the shaded region, and the verti-
cal loopγ which goes entirely around the hole. With some
thought, one can see that every other non-bounding1-cycle
must be homologous to exactly one ofα, γ, or α + γ. In
other words,β1(X) = 2. On the other hand,β1(Y) = 1,
sinceα still forms a non-bounding1-cycle inY, butγ does
not. Note that the1-cycle at the top of the rightmost compo-
nent ofY is trivial, since it is the boundary of the component
itself. Finally, the torus is hollow and therefore surrounds a
void, soβ2(X) = 1, while β2(Y) = 0.

Relative homology. We also give an intuitive description
of the relative homology groupsHp(Y, Y0), associated to
any nested pair of spaces(Y, Y0) such thatY0 is a closed
subspace ofY. In brief, one adjusts the above definitions of
cycle, boundary, and homology, making them relative toY0.
More precisely, we define the boundaryrelative toY0 of any
subspaceγ to be the portion of the boundary ofγ outsideY0.
A relativep-cycleis ap-dimensional subspaceα of Y whose
boundary relative toY0 is empty; of course, this includes the
possibility that the boundary ofα is actually empty. Adding
relativep-cycles exactly as above, we say that two relative
p-cyclesα andγ arehomologousif there exists a(p + 1)-
dimensional subspace ofY whose boundary relative toY0

is α + γ. Furthermore, a relativep-cycleα boundsif there
exists such a subspace whose boundary relative toY0 is ex-
actlyα. For example, a pointy ∈ Y is a relative0-cycle, and

it bounds iff there is a path withinY that connectsy to some
point inY0. A p-dimensionalrelative homology classis a set
of mutually homologous relativep-cycles. The collection of
such classes, along with the obvious additive structure, forms
the vector spaceHp(Y, Y0), which we call thep-th relative
homology groupof the pair(Y, Y0), and its rank,βp(Y, Y0)
is thep-th relative Betti numberof the pair.

For example, suppose again thatY is the shaded region
drawn in Figure 1 and thatY0 consists of the three circles
that make up its upper boundary. Every point inY can be
connected withinY to some point inY0. Hence all rela-
tive 0-cycles are trivial andβ0(Y, Y0) = 0. We can also
computeβ1(Y, Y0) = 1; as representative for the only non-
trivial 1-dimensional relative homology class, we could take
a path connecting the two leftmost circles inY0. As for di-
mension2, we findβ2(Y, Y0) = 2, with two independent
relative2-cycles formed by the two connected components
of Y. The symmetryβp(Y) = β2−p(Y, Y0) is not acciden-
tal but rather an example of Lefschetz Duality, which implies
thatβp(Y) = βd−p(Y, ∂Y) wheneverY is ad-manifold with
boundary∂Y; see eg. [18, Chapter 8]. As a special case, we
have Poincaré Duality, which states thatβp(X) = βd−p(X)
if X is ad-manifold without boundary; we see an example of
this whenX is the torus above.

Finally, suppose that we have another pair of spaces
(X, X0) such thatY ⊆ X, Y0 ⊆ X0, andX − X0 = Y − Y0.
For example,X could be the torus in Figure 1 andX0 could
be everything at the level ofY0 and above. Then the Prin-
ciple of Excision tells us that replacing the pair(Y, Y0)
with (X, X0) has no effect on relative homology, that is,
Hp(X, X0) andHp(Y, Y0) are isomorphic for allp; see eg.
[18, Chapter 3].

Ordinary persistence. The reader may have noticed that
homology classes do not come with a notion of size; for ex-
ample, if we were to make the hole in the torus from Figure
1 smaller, the Betti numbers would be unchanged. To pro-
vide a richer picture, we employ persistent homology which,
briefly, takes a compact (closed and bounded) topological
spaceX along with a real-valued functionf and returns the
size, as measured byf , of each homology class inX, as well
as the size of transient homological features created by the
function itself. For a precise algebraic definition, see forex-
ample [10, Chapter VII]. We imagine persistent homology
as a two-stage filtering process. In the first stage, we filterX

via thesublevel setsXr = f−1(−∞, r] of f , wherer can be
any real number. Asr runs from negative to positive infin-
ity, the sublevel sets include into one another and get bigger,
eventually forming the spaceX itself. During this process,
homology classes appear and disappear; persistent homol-
ogy tracks and quantifies this evolution, as we now explain
via an example.
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X

f

R

Figure 2: Height function on the nosy torus. We observe five ho-
mology classes during the filtration, drawn as vertical barson the
right. The four that go to infinity correspond to the essential homol-
ogy classes of the torus.

We consider the functionf : X → R depicted in Fig-
ure 2, whereX is the same torus from before andf measures
height in the vertical direction. A valuer is critical if f−1(r)
contains a point where the tangent plane is horizontal, and
regular otherwise. It should be intuitively clear that the only
homological changes happen when we pass the six critical
values off ; indeed, this is one of the fundamental principles
of Morse Theory; see eg. [17]. Passing the minimum such
value changesXr from the empty set to something homeo-
morphic to a disk; we say that a component isborn at this
critical value. Another component is born upon passing the
second minimum, and this component remains distinct un-
til it merges with the main component at the fourth critical
value. At this time, the component that was born laterdies
and we pair the second and fourth critical values. We repre-
sent the component as a directed line between the two rele-
vant critical values, as shown in Figure 2. Two1-dimensional
classes are born at the third and fifth critical values, and a2-
dimensional class is born at the maximum. We call these lat-
ter three classes, along with the original component,essen-
tial classes, as they represent the actual homology ofX. The
other component is aninessential classcaused by the func-
tion itself. Despite their name, inessential classes may actu-
ally represent very interesting features of the space; herethe
inessential component picks up the protrusion on the right
side of the torus.

Extended persistence. It should now be clear what we
mean by the size of an inessential class, as measured by the
function f , namely the difference between the critical val-
ues that gave birth and death. The essential classes, on the
other hand, have yet to be measured effectively, since they
have a birth but no death value. To correct this, we con-
sider, in the second filtering stage, pairs of spaces(X, Xr),
whereXr = f−1[r,∞) is a superlevel set, and we watch

the changes in relative homology that occur asr decreases
from positive to negative infinity. At the end of this process,
the superlevel set equalsX itself, so there can be no remain-
ing live homology classes; in particular, all of the essential
classes will obtain a death value. For example, the essen-
tial component of our torus dies at the maximum, since this
is the first point where it becomes a relative boundary. We
thus pair the global minimum with the global maximum, and
represent the essential component as a directed curve which
starts at the birth value, moves up to infinity, and then ends
at the death value; see Figure 3, which also displays the birth
and death values for the other three essential classes.

X

Figure 3: From left to right: the height function of the nosy torus,
the ‘curvy’ barcode in which the extended classes go to infinity and
then come back, and the traditional persistence diagram in which
every interval is drawn as a point.

Every class which is born at some point of the two-stage
process will eventually die, and is thus associated with a pair
of critical values. These pairs fall into three types.Ordinary
pairs have birth and death during the first stage,extended
pairs have birth during the first stage and death during the
second, whilerelativepairs come entirely within the second
stage. For example, the2-dimensional relative class repre-
sented by the downward-directed line segment in Figure 3
gives rise to a pair of this latter type. Note that death values
can be lower than birth values; this is always true for relative
pairs, and sometimes true for extended pairs. Whatever the
case, we define thepersistenceof a class to be the absolute
difference between its birth and death values.

Diagram. We represent this homological information in
compact form via a multi-set of dots in the2-dimensional
plane, containing one dot(ri, rj) for each pair of critical
valuesri, rj , such that a class is born atri and dies atrj .
We denote this multi-set byDgm(f), and call it thepersis-
tence diagramof the functionf . By Dgmp(f) we mean
the sub-diagram ofDgm(f) corresponding top-dimensional
homology classes. Within eachDgmp(f) are contained
theordinary, extended, andrelative subdiagrams, Ordp(f),
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Extp(f), andRelp(f), defined in the obvious way. For tech-
nical reasons apparent below, it is convenient to include in
Ordp(f) and Relp(f) infinitely many copies of every dot
along the major diagonal. Note that dots in the ordinary dia-
grams are above the major diagonal, dots in the extended di-
agrams can be on either side, and dots in the relative digram
are below. For each type of dot, its vertical distance from the
diagonal equals the persistence of the associated class. The
persistence diagram for our height functionf is displayed in
Figure 3. The reader will notice an obvious symmetry across
the major diagonal; this is a consequence of the dualities
mentioned above, and it will happen whenever the domain
X is a manifold without boundary.

Death
Birth

Birt
h

Dea
th

Ext(f)

Ord(f)

Rel(f)

Figure 4: The three overlaid subdiagrams in Figure 3 are unfolded
by flipping pages: keepingOrd(f) fixed,Ext(f) flips up, followed
by Rel(f) which flips up and then to the right. Finally, we clip the
ordinary and relative subdiagrams along the diagonal and rotate the
entire design by 45 degrees so it rests on its long side. The arrows
of the diagram go from negative to positive infinity.

We will see in Section 3 that in some contexts the three
subdiagrams play very different roles. To avoid confusion,
we often redrawDgm(f) as two triangles and a diamond,
with coordinate systems as shown in Figure 4. Note that the
horizontal line along the bottom of the new drawing corre-
sponds to the major diagonal in both the ordinary and relative
subdiagrams, while the vertical dashed line across the middle
diamond is the major diagonal for the extended subdiagram.
The middle diamond contains one dot per essential class, and
thus in our example there are four dots. In cases in which the
spaceX is contractible, for example when we have an image
considered as a real-valued function on the unit-cube, this
diamond will contain exactly one dot.

Stability. The persistence diagramDgm(f) is a stable rep-
resentation of the homological information carried by the
functionf , in the sense that replacingf by a noisy version
g will result in a diagram which is not too different. There
are a variety of ways to make this statement more precise.
Most simply, we consider a bijection betweenDgm(f) and
Dgm(g), recalling that the ordinary and relative subdiagrams
contain infinitely many copies of each major diagonal dot,

and we find the length of the longest edge in the matching.
We then minimize this length over all possible matchings,
and call this minimum thebottleneck distancebetween the
two diagrams, denoted asW∞(Dgm(f), Dgm(g)). Since
the distance between dots in different subdiagrams is infin-
ity, it suffices to consider matchings within each subdiagram.
One can then show, under mild conditions onf andg, that
W∞(Dgm(f), Dgm(g)) is bounded from above by theL∞-
distance between the two functions; see [10, Chapter XIII].
There is also a result which bounds the Wasserstein distance
between the diagrams, although this requires stronger as-
sumptions on both the space and the two functions.

Death
Birth

Birt
h

Dea
th

Figure 5: On the right, we see the distorted nosy torus that mimics
the effect of a slight perturbation on the height function. In the
middle, we see the persistence diagrams of the two height functions
superimposed. The best bijection matches each of the six olddots
with a nearby new dot, and it matches the remaining eight new dots
with points on the diagonal.

For example, suppose we embed the torusX into R
3 as

shown in Figure 5 on the right. Lettingg : X → R mea-
sure height in the vertical direction, we note thatg is indeed
a noisy version of our original height functionf . The per-
sistence diagramsDgm(g) andDgm(f) are overlaid in the
middle of the same figure. Note that the ordinary and rela-
tive subdiagrams ofg contain more dots than those off , but
these extra dots are all close to the major diagonal. The two
extended subdiagrams will of course have the same number
of dots, since the actual homology ofX is unaffected by our
choice of real-valued function.

3 Reading
In this section, we discuss how one can mine a great deal of
homological information from the persistence diagram of a
real-valued functionf on a topological space. By its def-
inition, the diagram reflects a filtration by sublevel sets, so
it is not surprising that one can read their homology groups
from Dgm(f). But the diagram also displays the homology
of every level setf−1(a), as well as the absolute and rela-
tive homology of everyinterlevel setf−1[a, b]. Level sets
and sublevel sets are of course just special cases of interlevel
sets, but we explain the results separately for greater clarity.
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For simplicity, we will assume that the extremesa, b of the
intervals are regular values off .

Abstract vector space. A slight algebraic digression is
needed in order to even make the statements in this sec-
tion. First, we recall that every absolute or relative homology
group is a vector space, and as such has a basis, or a set of
vectors that uniquely generate all other vectors in the vector
space. In [11], the authors show that the notions of birth and
death allow one to choose bases for the groupsH(Xr) in a
compatible way. This means that forr < s, we obtain the
basis ofH(Xs) from a subset of the basis ofH(Xr) by adding
new basis vectors, but without any need for recombining al-
ready chosen basis vectors. In a nutshell, birth corresponds
to adding a basis vector and death corresponds to deleting
one. Furthermore, these basis vectors are in one-to-one cor-
respondence with the dots inDgm(f).

More precisely, one can think of the dots themselves as
defining a basisB for an abstract vector spaceV. One then
defines a special setV of linear subspaces ofV, namely
those spanned by all subsets of vectors fromB, and one then
proves that eachH(Xr) is isomorphic to a particular element
of V ; this isomorphism, which we discuss below, defines the
chosen basis. This result was significantly extended in [3],
following work in [5] and [6]: it turns out that the dots in
Dgm(f) also correspond, with some dimensional modifica-
tion, to bases for a much wider class of absolute and rel-
ative homology groups. We explain this in several stages,
although we omit proofs.

Sublevel sets. Given a real numberb, we stress that the ho-
mology of the sublevel setXb can be quite different from that
of X: there can be essential classes inX that are born afterb,
and there can be inessential classes which atb have yet to die.
Nonetheless, a basis for the homology groupH(Xb) can be
read offDgm(f). For each regular valueb and each dimen-
sionp, we define the following sub-multi-set ofDgmp(f):

Wp(−∞, b] = {(x, y) ∈ Ordp(f) | x < b < y}

⊔ {(x, y) ∈ Extp(f) | x < b}.

In other words,Wp(−∞, b] contains dots that lie within the
rectangular shaded region on the left side of Figure 6. Note
that dots in theOrdp(f) portion of this region correspond
to p-dimensional classes that are inessential but still alive
at b, while dots in theExtp(f) portion give essentialp-
dimensional classes that have formed beforeb. Hence the
following result should not be too surprising.

CLOSED SUBLEVEL SET LEMMA . For each regular
valueb and each dimensionp, there exists a natural isomor-
phism that takesHp(Xb) to the vector space inV whose
basis corresponds toWp(−∞, b].

Death
Birth

Birt
h

Dea
th

Death
Birth

Birt
h

Dea
th

0 1 b b 1 2

b

Figure 6: Left: the rectangular region of the closed sublevel set that
cuts the hole in the middle. Right: the rectangular region ofthe
corresponding open sublevel set.

For this result and several others to follow, it is illustrative
to consider how the setsWp change as the extreme values
of the intervals change continuously. For example, if we let
b go to ∞, or indeed just set it higher than the maximum
value off , then theOrdp(f) portion ofWp(−∞, b] disap-
pears and we are left withWp(−∞, +∞) = Extp(f). That
is, the essential classes make up the actual homology ofX.
The second stage of the filtration concerns pairs of spaces
(X, Xb). We now explain how to read the relative homology
of such pairs from the diagram. For each regular valueb and
each dimensionp, we define:

Wp(−∞, b) = {(x, y) ∈ Extp(f) | y < b}

⊔ {(x, y) ∈ Relp(f) | y < b < x}.

Here we have also introduced the notation(−∞, b) to stand
for the pair of spaces((−∞, b], {b}), whose preimage un-
der f has, by excision, the same relative homology as the
pair (X, Xb). Again,Wp(−∞, b) is the sub-multi-set of dots
within a particular rectangular region ofDgmp(f), this time
the shaded one on the right side of Figure 6.

OPEN SUBLEVEL SET LEMMA . For each regular valueb
and each dimensionp, there exists a natural isomorphism
that takesHp(X, Xb) to the vector space inV whose basis
corresponds toWp(−∞, b).

Level sets. The diagram also encodes the homology of all
level setsf−1(a). The situation is almost identical to that of
sublevel sets, in that a basis forH(f−1(a)) is in one-to-one
correspondence with the dots in certain rectangular regions;
the only difference is that we now have two rectangles and
we have to shift the dimension inside one. We state the for-
mula first, and then give some intuition behind the dimension
shift; for a rigorous explanation, see [3]. For eacha and each
dimensionp, we distinguish the dots inDgm(f) within two
rectangular regions,

λp(a) = {(x, y) ∈ Ordp(f) | x < a < y}

⊔ {(x, y) ∈ Extp(f) | x < a < y},

̺p(a) = {(x, y) ∈ Extp(f) | y < a < x}

⊔ {(x, y) ∈ Relp(f) | y < a < x},

6



and we defineWp(a) = λp(a) ⊔ ̺p+1(a). Motivated by
their graphical appearance, we call the two rectangles apair
of wings. Finally, we have:

LEVEL SET LEMMA . For each regular valuea and each
dimensionp, there exists a natural isomorphism that takes
Hp(f

−1(a)) to the vector space inV whose basis corre-
sponds toWp(a).

Death
Birth

Birt
h

Dea
th

a

0

2

2

1
0

1

+r

a
−r

Figure 7: The pair of wings defined bya contains six dots corre-
sponding to the three components and the three1-cycles of the level
set. If we allow a perturbation of the height function of strength up
to r, then we capture only two dots.

This result is illustrated in Figure 7. On the left side, we see
a level setf−1(a) which consists of three disjoint circles,
and on the right we focus on the pair of wings. From the
lemma, we know that a basis forHp(f

−1(a)) can be derived
in some way from thep-dimensional dots in the left wing
and the(p + 1)-dimensional dots in the right wing.

To see this explicitly, note thatH0(f
−1(a)) is rank three.

The most obvious choice of basis would be the three0-
dimensional homology classesα, γ, δ, representing, respec-
tively, the three connected components of the level set as
read from left to right in the picture. Note that the left wing,
λ0(a), contains two dots: the ordinary one gives us the right-
most componentδ, while the extended dot corresponds either
to α or γ, depending on an arbitrary choice made during the
persistence computation. On the other hand, the right wing,
̺1(a), contains one dot: an extended one, and this corre-
sponds to the essential1-cycle represented by the vertical cir-
cle around the hole in the torus. To transform this cycle into
a basis element forH0(f

−1(a)), we take its cross-section at
a, which results in a pair of points, one from each of the
two left components. In other words, this dot corresponds to
the basis elementα + γ in H0(f

−1(a)). For the expert, we
note that this cross-section is a substitute for the connecting
homomorphism in the Mayer-Vietoris sequence. A similar
explanation gives the transformation between the three dots
in W1(a) and a basis for the rank three groupH1(f

−1(a)).

Robustness. Note that the diagram in Figure 7 also con-
tains a pair of smaller wings, which do not meet and an-
swer the following question: for each homology class in

H(f−1(a)), how strong a perturbationh of f is required
so that the level seth−1(a) no longer supports this class?
This required strength, measured in theL∞-distance, is a
real numberr, and we call the collection of all such num-
bers, over all homology classes inf−1(a), the robustness
of the level set; we refer the reader to [12] for a fully rig-
orous definition. To read the robustness from the diagram,
we shrinkλp(a) and ̺p(a) as indicated in Figure 7. If a
dot leaves the wings after a shrinking by distancer, then we
know that there exists a perturbation of strengthr that de-
stroys this class. In the example drawn, we note that four
dots have already left the pair of wings, two representing
components and the other two giving1-cycles. This reflects
the fact that we can move the lower saddle abovea and the
end of the nose belowa, while perturbingf by at mostr.
Equivalently, we can deform the three circles of the current
level set until they merge through addition into a single cir-
cle, and we can do this without leaving the interlevel set de-
fined by[a − r, a + r].

Interlevel sets. By making a slight adjustment in the place-
ment of our pair of wings in the diagram, we can also cap-
ture the absolute homology of all interlevel setsf−1[a, b],
as well as the relative homology of the pairs of spaces
(f−1[a, b], f−1(a) ∪ f−1(b)); we use the notationf−1(a, b)
as shorthand for the latter pair. To do this, we set

λp[a, b] = {(x, y) ∈ Ordp(f) | x < b < y}

⊔ {(x, y) ∈ Extp(f) | x < b, a < y},

̺p[a, b] = {(x, y) ∈ Extp(f) | b < x, y < a}

⊔ {(x, y) ∈ Relp(f) | y < a < x},

λp(a, b) = {(x, y) ∈ Ordp(f) | x < a < y}

⊔ {(x, y) ∈ Extp(f) | x < a, b < y},

̺p(a, b) = {(x, y) ∈ Extp(f) | a < x, y < b},

⊔ {(x, y) ∈ Relp(f) | y < b < x},

and we define

Wp(I) =

{

λp[a, b] ⊔ ̺p+1[a, b] if I = [a, b],
λp−1(a, b) ⊔ ̺p(a, b) if I = (a, b).

INTERLEVEL SET LEMMA . For each open or closed in-
tervalI and each dimensionp, there exists a natural isomor-
phism that takesHp(f

−1(I)) to the vector space inV whose
basis corresponds toWp(I).

In the closed case, the two wings meet to the right of the
vertical axis, so that the left wing ends up larger than the
right wing; in the open case, the situation is reversed. For
each pair, the dots in the smaller wing must undergo a di-
mension shift in order to give the required homology basis.
For example, if we take(a, b) as shown on the right side
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Figure 8: The wings in the left diagram represent the absolute ho-
mology of the closed interlevel set, while the wings in the right
diagram represent the relative homology of the open interlevel set.

of Figure 8, we have a rank-three relative homology group
H1(f

−1(a, b)), and there are three dots inW1(a, b). The
rightmost one of these corresponds to the vertical1-cycle in
the torus, which becomes a relative1-cycle in the open in-
terlevel set. The connection between the two0-dimensional
dots in the left wing and the other two1-cycles in the open
interlevel set is a bit more complicated. Each dot corre-
sponds to a component within the sublevel set defined bya,
and these components then get suspended to the top and bot-
tom boundaries of the interlevel set to form relative1-cycles.
Again for the expert, a rigorous explanation of the dimension
shift comes via the Mayer-Vietoris sequence.

4 Reasoning
In this section, we discuss the long exact sequence of a pair,
which is an algebraic relationship between the relative ho-
mology of a pair of spacesY ⊆ X, and the absolute homol-
ogy of the individual spacesY andX. Second, we describe
the Mayer-Vietoris exact sequence, which is an algebraic ex-
pression of a divide-and-conquer technique that connects the
homology of a perhaps complicated spaceX = A ∪ C to
the homology of the hopefully simpler subspacesA, C, and
A ∩ C. We begin with a detailed discussion of maps between
homology groups.

Functoriality. As we have seen, homology assigns a dis-
crete set of algebraic invariants, namely the homology
groups along with their Betti numbers, to a topological
space. Crucially, this algebraic information can be trans-
ferred from one space to another via a continuous map. More
precisely, such a mapi : Y → X induces linear transforma-
tionsip : Hp(Y) → Hp(X), one for each homological dimen-
sionp, in such a way that homeomorphisms between spaces
induce isomorphisms between groups. This entire process is
an example offunctoriality, one of the key tools in algebra.
The induced maps are easiest to understand wheni is sim-
ply the inclusion of a subspaceY into a larger spaceX; for
example, letY andX be as in Figure 1. In these situations,
the linear mapip takes a homology classα ∈ Hp(Y) with
cycle representativeA, and maps it to the homology class

ip(α) consisting of all cycles inX that are homologous to
A. For example, the homology class given by the sum of the
two components in ourY gets mapped to zero, since it is a
boundary withinX. On the other hand, nothing inH(Y) gets
mapped to the2-dimensional homology class ofX.

For any pair of spacesY ⊆ X, there is also a series of
linear transformationsjp : Hp(X) → Hp(X, Y) between the
absolute homology of the larger space and the relative ho-
mology of the pair. Briefly,jp takes each homology class
α ∈ Hp(X) with cycle representativeA and maps it to the
relative homology classjp(α) ∈ Hp(X, Y) consisting of all
relative cycles that, relative toY, are homologous toA. If
(X, Y) is as in Figure 1, thenj0 sends the component ofX

to zero, whilej1 maps the1-dimensional homology class in
X represented by the vertical circle to the relative homol-
ogy class represented by an arc connecting the two leftmost
boundary circles ofY.

Linear transformations and exact sequences. To state
our results formally, we need to first recall some terminol-
ogy from linear algebra, remembering that our homology
groups are just vector spaces. Letj : U → W be a linear
transformation between vector spaces. Itskernelconsists of
all elements in the domain that map to zero in the range:
ker j = {u ∈ U | j(u) = 0}. The imageof j consists of all
elements in the range that have a preimage in the domain:
im j = {j(u) | u ∈ U}. We note that the kernel is a linear
subspace ofU, while the image is a linear subspace ofW.
We also have thecokernelof j which we obtain by taking the
quotient of the range and the image:cok j = W/im j. Going
back to our example illustrated in Figure 1, the sum of com-
ponents inY is in the kernel ofi0, while the2-cycle inX is
in the cokernel ofi2. Consider now a sequence of three vec-
tor spaces connected by linear transformations:i : U → V

and j : V → W. This sequence is said to beexactat V

if im i = ker j. A long exact sequenceis a doubly infinite
sequence of vector spaces and linear maps that is exact at ev-
ery node. In the examples considered in this paper, all but
finitely many vectors spaces in the sequence will be zero.

Finally, we define thedirect sumV ⊕ V′ of two vector
spacesV, V′ to be the set of coordinate pairs(v, v′), with v ∈
V andv′ ∈ V′. Vector operations are defined component-
wise. To illustrate this concept in action, we consider again
a linear transformationj : U → W. Note that the preimage
of eachw ∈ W is of the formj−1(w) = u + ker j. The
preimages ofw, w′ ∈ W are therefore either disjoint or the
same. It follows that the domain is isomorphic to the direct
sum of the kernel and the image. We state this more formally,
together with a similar decomposition of the range:

U ∼= ker j ⊕ im j,

W ∼= im j ⊕ cok j.

8



Indeed, every set in the cokernel is of the formw + im j, and
the sets are again either disjoint or the same.

Inclusions. Using the diagram, we now describe the im-
ages, kernels, and cokernels of the homology maps induced
by the inclusioni : f−1[c, d] → f−1[a, b] whenevera ≤ c ≤
d ≤ b are regular values off . Fix a homological dimension
p. The Interlevel Set Lemma distinguishes bases for the ho-
mology groupsHp(f

−1[c, d]) andHp(f
−1[a, b]) which are

in one-to-one correspondence with the dots in the regions
Wp[c, d] andWp[a, b]. It turns out that basic set-theoretic
manipulations of these regions suffice to describe the image,
kernel, and cokernel of the induced mapsip; we give intu-
itive justifications of each result here, leaving the rigor to
[3]. Since a class in the larger interlevel set is inim ip iff
it has a cycle representative in the smaller interlevel set,the
following result should not be surprising.

IMAGE LEMMA . For eachp, there exists a natural iso-
morphism that takesim ip to the vector space inV whose
basis corresponds toR(im ip) = Wp[a, b] ∩ Wp[c, d].

SinceHp(f
−1[a, b]) is isomorphic to the direct sum of the

image and the cokernel ofip, we also obtain:

COKERNEL LEMMA . For eachp, there exists a natural
isomorphism that takescok ip to the vector space inV whose
basis corresponds toR(cok ip) = Wp[a, b] −Wp[c, d].

Finally, the kernel ofip consists of all homology classes in
the smaller set that disappear underip, and thus cannot be
homologous to anything in the larger set.

KERNEL LEMMA . For eachp, there exists a natural iso-
morphism that takesker ip to the vector space inV whose
basis corresponds toR(ker ip) = Wp[c, d] −Wp[a, b].

These claims are illustrated in Figure 9 for the special case
c = d = b; that is, we include the top level into the interlevel
set. In this case, we get five rectangles, two each for the
image and cokernel, and one for the kernel. As mentioned
above, the domain ofip is isomorphic to the direct sum of
the kernel and the image, and the range ofip is isomorphic to
the direct sum of the image and the cokernel. Accordingly,

Wp[b, b] = R(ker ip) ∪ R(im ip),

Wp[a, b] = R(im ip) ∪ R(cok ip);

compare with Figure 9.

Long exact sequence of a pair. Suppose thatY ⊆ X is
a pair of topological spaces. Then the absolute homology
groupsH(X) andH(Y) fit together with the relative homol-
ogy groupH(X, Y) into the following long exact sequence:

kp+1

→ Hp(Y)
ip
→ Hp(X)

jp
→ Hp(X, Y)

kp

→ Hp−1(Y)
ip−1

→ ;
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Figure 9: Left: the nosy torus with a shaded closed interlevel set.
Right: the persistence diagram in which we show the pair of wings
for the interlevel set as well as for the level set defined by the upper
endpoint of the interval. Subregions of the wings correspond to the
kernel, image, and cokernel of the homology map induced by the
inclusion of the level in the interlevel set.

see eg. [18]. Hereip is thep-dimensional homology map in-
duced by the inclusion, andjp is the map between absolute
and relative homology discussed above. The mapkp is of-
ten called theconnecting homomorphismand is a bit more
difficult to understand. We will give a partial explanation of
it below, but first we note that it is, at least abstractly, fully
characterized by the following three easy consequences of
exactness:

cok kp+1
∼= im ip ∼= ker jp, (2)

cok ip ∼= im jp ∼= ker kp, (3)

cok jp ∼= im kp
∼= ker ip−1. (4)

There is a good deal of algebra to unpack here. To illus-
trate, we again letf be the height function defined on our
torusX, and we take[a, b] as indicated on the left side of
Figure 9. We explain this exact sequence in terms of the
level setf−1(b), the interlevel setf−1[a, b], and the pair
(f−1[a, b], f−1(b)) = f−1[a, b), where we have made an
obvious adjustment to previous notation. First, we already
understand the linear transformation

ip : Hp(f
−1(b)) → Hp(f

−1[a, b]).

Indeed, the Image, Kernel, and Cokernel Lemmas tell us how
to read bases forim ip, ker ip, andcok ip, for each dimension
p, from the diagram: they correspond to the dots in the re-
gions indicated on the right side of Figure 9. We encourage
the reader to verify that the dots in the rectangular regions
give the correct ranks in all cases. Using (2) to (4), we im-
mediately have bases forim jp, ker jp, andcok jp, again for
all dimensionsp, where

jp : Hp(f
−1[a, b]) → Hp(f

−1[a, b))

maps absolute to relative homology. In particular, we can
use thatHp(f

−1[a, b)) is isomorphic to the direct sum of the
image and the cokernel to derive a further diagram-reading
rule:
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HALF-OPEN INTERLEVEL SET LEMMA . For each half-
open interval[a, b) and each dimensionp, there exists a
natural isomorphism that takesHp(f

−1[a, b)) to the vec-
tor space inV whose basis corresponds toWp[a, b) =
R(im jp) ∪ R(cok jp).

In Figure 9, we see this union formed byR(cok ip) and
R(ker ip−1). Counting the dots in these regions and recalling
the dimension shift in the right wing, we note that the Betti
numbers off−1[a, b) in dimensions0, 1, and2 are indeed
0, 2 and0, as they should be. Incidentally, we could use the
exact sequence of a pair to deduce how to read the homology
of an open interval set. The result is of course the formula we
claimed forI = (a, b) in the Interlevel Set Lemma. Another
application of (2) to (4) gives the regions corresponding to
the image, kernel, and cokernel of the connecting homomor-
phism,

kp : Hp(f
−1[a, b)) → Hp−1(f

−1(b)).

For example, focusing our attention on dimensionp = 1, we
note thatim k1

∼= ker i0 andR(ker i0) contains a single dot.
In the relative homology of the pairf−1[a, b), this dot cor-
responds to the relative1-dimensional homology class rep-
resented by an arcA connecting the two portions off−1(b).
This class is mapped, viak1, to the sum of the two compo-
nents inH0(f

−1(b)). In other words,k1 takes the relative
class represented byA and maps it to the absolute class rep-
resented by the boundary ofA. This is indeed the general
rule for the boundary map in the exact sequence of a pair,
although we omit further details.

Mayer-Vietoris exact sequence. As promised, we now
explain the Mayer-Vietoris divide-and-conquer techniquevia
the diagram. First, supposeX = A ∪ C is a decomposi-
tion of a topological space into two closed subspaces, and
setB = A ∩ C. We letiA andiC denote the homology maps
induced by the inclusions ofB into A and intoC, and we
denote byjA and jC the homology maps induced by the in-
clusions ofA and ofC into X. Then theMayer-Vietoris se-
quence:

kp+1

→ Hp(B)
ip
→ Hp(A) ⊕ Hp(C)

jp
→ Hp(X)

kp

→ Hp−1(B)
ip−1

→ ,

is exact, whereip is defined byip(α) = (iAp (α), iCp (α)), while
jp is given by the formulajp(α, γ) = jAp (α) + jCp (γ). The
mapkp is again a connecting homomorphism, and we will
illustrate it, as well as the other two maps, via the following
example.

As always, we letf be the height function on our torusX,
and we choosea < b < c as indicated in Figure 10. We will
discuss the Mayer-Vietoris sequence in terms of the decom-
positionf−1[a, c] = f−1[a, b] ∪ f−1[b, c]. To use the nota-
tion above, we setA = f−1[a, b] andC = f−1[b, c], noting
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Figure 10: Left: the decomposition off−1[a, c] into the interlevel
sets defined by[a, b] and[b, c]. Right: the wings of the two inter-
level sets as well as the level set at which the interlevel sets intersect.
The wings are decomposed into rectangular regions that correspond
to the kernels, images, and cokernels of the various maps. Two of
the rectangles belong to both the image and the cokernel of the ho-
mology map induced by the inclusion ofB in A andC.

thatA andC intersect in the level setB = f−1(b). Now the
mapsiA andiC are fully characterized by the lemmas above.
To understand the mapip from Hp(f

−1(b)) to the direct sum
of Hp(f

−1[a, b]) andHp(f
−1[b, c]), we exploit the following

formulas:

R(im ip) = R(im iAp ) ∪ R(im iCp ),

R(ker ip) = R(ker iAp ) ∩ R(ker iCp ),

R(cok ip) = R(cok iAp ) ∪ R(cok iCp )

∪ [R(im iAp ) ∩ R(im iCp )].

Only the third formula needs an explanation. If the regions of
im iAp andim iCp shareℓ dots, then they contribute2ℓ dimen-
sions to the direct sum. Only theℓ-dimensional diagonal of
this linear subspace belongs to the image ofip. The remain-
ing ℓ dimensions belong to the cokernel ofip. Indeed, the
dots inR(im iAp ) ∩ R(im iCp ) do double duty to cover the ex-
tra dimensions of the direct sum construction. As in the case
of the exact sequence of a pair, we can exploit the isomor-
phism formulas (2) to (4) to understand the images, kernels,
and cokernels ofjp andkp. For instance, from (4) we get

R(im k1) = R(ker i0) = R(ker iA0 ) ∩ R(ker iC0 ).

This region contains a single dot contributed by the vertical
circle going around the hole of the torus. This class is in the
kernel of bothiA0 andiC0 ; indeed, bothA andC are connected,
sox + y forms the boundary of an arcsA in A and another
arcC in C. On the other hand, notice thatA andC then have
a common boundary, and so they glue together to form the1-
dimensional homology classγ ∈ H1(A ∪ C) represented by
A+ C. The mapk1 is defined in such a way thatk1(γ) = α,
and henceα ∈ im k1, as our formulas require. Intuitively,γ
is mapped byk1 into the0-cycle created by taking a cross-
section atb.
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5 Discussion
The contribution of this paper is the exposition of a new,
combinatorial angle at a classic subject within algebraic
topology: the characterization of topological features ofa
space or a function through homology groups. This new
angle is facilitated by the relatively recent addition of per-
sistence to the theory of homology groups. In particular,
the persistence diagram of a function forms a comprehensive
book-keeping tool on which we build our point calculus. We
believe that topological information is useful also to non-
topologists, even to non-mathematicians, so we have writ-
ten this paper with an eye on minimizing the formalism and
adding intuitive explanations where the formalism seemed
necessary or useful.

In the interest of brevity, we have not described the algo-
rithms needed to compute persistence diagrams. Suffice to
say that they exist and are fast; see [10] for a general intro-
duction and [2] for algorithms appropriate for image data.
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